研究生: |
黃仁杰 Jen-Chieh Huang |
---|---|
論文名稱: |
Positive Almost Periodic Solutions for Some Nonlinear Integral Equations |
指導教授: |
黃明傑
Min-Jei Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 11 |
中文關鍵詞: | 近似週期函數 、積分方程 、希爾伯特射影距離 、固定點定理 |
外文關鍵詞: | Almost periodic solution, integral equation, Hilbert projective metric, fixed point theorem |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The purpose of this paper is to study the positive almost periodic solutions to the nonlinear integral equation.
Using Hilbert projective metric techniques and contraction
mapping principle, we establish existence and uniqueness results for the integral equation. Some examples are given.
[1] L. Amerio and G. Prouse, Almost Periodic Functions and Functional Equations, Van Nostrand
Reinhold Company, New York, Toronto, London, Melbourne, 1971.
[2] S. Busenberg and K. Cooke, Periodic solutions to delay di¤erential equations arising in some
models of epidemiology, Appl. Nonlinear Analysis, Academic Press (1979), 67-78.
[3] P. J. Bushell, Hilbert’s metric and positive contraction mappings in a Banach space, Arch.
Rational Mech. Anal., 52(1973), 330-338.
[4] P. J. Bushell, The Cayley-Hilbert metric and positive operators, Linear Algebra and its Appli-
cations, 84(1986), 271-280.
[5] K. Cooke and J. Kaplan, A periodicity threshold theorem for epidemics and population growth,
Math. Biosci. 31(1976), 87-104.
[6] C. Corduneanu, Almost Periodic Functions, John Wiley and Sons, New York, London, Sydeny,
Toronto, 1968.
[7] K. Ezzinbi and M. A. Hachimi, Existence of positive almost periodic solutions of functional
equations via Hilbert projective metric, Nonlinear Analysis, T.M.A. 26(1996), 1169-1176.
[8] A. Fink and J. Gatica, Positive almost periodic solutions of some delay integral equations, J
di¤. Eqns, 83(1990), 166-178.
[9] J. Kaplan, M. Sorg and J. Yorke, Asymptotic behaviour for epidemic equations, Nonlinear
Analysis, T.M.A.(1978).
[10] R. Nussbaum, A periodicity threshold for some nonlinear integral equation, SIAM 9(1978),
356-367.
[11] H. Smith, An abstract threshold theorem for one parameter families of positive noncompact
operator, Funkicalaj Ekvacioj 24(1981), 141-153.