簡易檢索 / 詳目顯示

研究生: 馬少陽
Ma, Shao-Yang
論文名稱: 聚丙烯腈/氧化石墨烯改良基材膜於正滲透複合膜之應用
Polyacrylonitrile/Graphene Oxide Modified Film for the Application in Forward Osmosis Membrane
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 洪仁陽
Hung, Ren-Yang
林冠佑
Lin, Guan-You
李紫原
Lee, Chi-Young
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 93
中文關鍵詞: 正滲透複合薄膜正滲透分子級逐層堆疊法氧化石墨烯氧化石墨烯改良基材膜
外文關鍵詞: Thin-film composite membrane, Forward osmosis, Molecular layer-by-layer method, Graphene oxide, GO-modified substrate
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在製備具有高通量與高阻鹽之複合膜,並將其應用於正滲透(Forward osmosis, FO)分離程序,以期改善全球水資源短缺之問題。實驗首先製備聚丙烯腈(Polyacrylonitrile, PAN)高分子鑄模液,並使其經過倒相聚合法形成基材膜,接著將聚電解質沉積於PAN底表面上,隨後以分子級逐層堆疊法(Molecular layer-by-layer, mLBL)成長聚醯胺(Polyamide, PA)阻鹽層於經聚電解質沉積後之基材膜上。再者,本研究亦配製聚丙烯腈/氧化石墨烯(Polyacrylonitrile/ Graphene oxide, PAN/GO)之高分子鑄模液,進行基材膜之改良,製成複合膜後,比較不同重量氧化石墨烯混摻之聚丙烯腈性能差異。研究內容包含測試高分子漿料之帶電性,基材膜表面之親疏水性和表面、截面形貌,以及正滲透複合膜之表面與正滲透分析。研究結果顯示,經過氧化石墨烯的改良,複合膜擁有更好的正滲透效能。其中混摻0.2 wt% GO之複合膜擁有最佳之正滲透效能,在提取液為1 M氯化鈉,進流液為去離子水的情況下,其水通量可達18.15 LMH,逆溶質擴散維持在6.51 gMH,說明本實驗提出之製備複合膜方式未來可做為FO系統隔離膜之參考。本實驗也嘗試將氧化石墨烯混摻於阻鹽層中,研究結果顯示,分散不好的氧化石墨烯會破壞聚醯胺阻鹽層而使效能下降,若能提升氧化石墨烯於阻鹽層之分散性,將有機會能夠提升碳複合膜之正滲透效能表現。


    Water scarcity is one of the most critical problems in the world. To solve this problem, we design a high performance thin film composite (TFC) membrane for the forward osmosis (FO) application. First, we fabricate a polyacrylonitrile (PAN) substrate and deposite polyelectrolyte on it, followed by using the molecular layer-by-layer (mLBL) method to fabricate the polyamide (PA) active layer. Additionally, we modify the substrate by adding graphene oxide (GO) into the PAN cast solution while remaining the other processes unchanged.
    Results show that after GO modification of the PAN substrate, the substrate hydrophilicity and pore connectivity increase, and the FO performance is significantly improved. The best FO performance with water flux of 18.15 LMH and reverse salt flux of 6.51 gMH is achieved by the PAN/GO(0.2)250-PEIPAA-mLBL3 membrane, indicating that this novel method may have great potential used in future FO technologies.
    Furthermore, this work also tries to modify the PA layer by adding GO into it, and the results show that GO might damage the PA layer and get a higher Js value if the dispersity of GO is poor. Thus, how to increase the GO dispersity in PA layer may be a key factor to produce a high performance membrane.

    摘要 I Abstract II 致謝 III 目次 IV 表目次 VIII 圖目次 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 薄膜技術簡介 3 2.1.1 薄膜定義 3 2.1.2 薄膜分離程序 4 2.1.3 薄膜型態 6 2.2 複合薄膜簡介與製備 8 2.2.1 多孔支撐層之製備 9 2.2.2 緻密選擇層之製備 10 2.3 正向滲透技術簡介 13 2.3.1 正向滲透技術之歷史與發展 14 2.3.2 正向滲透技術之原理與應用 14 2.3.3 正向滲透技術之瓶頸 15 2.4 石墨烯之簡介 20 2.4.1 石墨烯之製備方式 20 2.4.2 石墨烯於正滲透薄膜之應用 22 2.5 本實驗室過去在水資源的探討回顧 23 第三章 實驗方法與分析 36 3.1 實驗用化學藥品、實驗設備與材料分析儀器 37 3.1.1 電磁加熱攪拌器 37 3.1.2 高速離心機 38 3.1.3 超音波震盪機 38 3.1.4 介達電位分析儀 38 3.1.5 X射線繞射分析儀 39 3.1.6 場發射掃描式電子顯微鏡 39 3.1.7 原子力顯微鏡 40 3.1.8 水接觸角量測儀 40 3.1.9 正滲透效能測試系統 41 3.2 實驗方法及步驟 45 3.2.1 氧化石墨烯之製備 45 3.2.2 基材膜製備 46 3.2.3 聚醯胺阻鹽層之製備 48 第四章 結果與討論 57 4.1 聚丙烯腈混摻氧化石墨烯之漿料及基材膜分析 58 4.1.1 高分子漿料之介達電位分析 58 4.1.2 X射線繞射分析 59 4.1.3 水接觸角分析 59 4.1.4 場發式掃描電子顯微鏡之形貌分析 60 4.2 聚丙烯腈混摻氧化石墨烯之正滲透複合薄膜分析 62 4.2.1 場發式掃描電子顯微鏡之形貌分析 62 4.2.2 原子力顯微鏡之形貌觀察 63 4.2.3 正滲透效能之分析 64 4.2.4 不同提取液濃度對正滲透效能之影響 65 4.2.5 不同提取液濃度對壓力延遲滲透效能之影響 66 4.2.6 正滲透和壓力延遲滲透模式之比較 66 4.2.7 本研究製備之正滲透複合薄膜與商用膜及其他研究之複合膜效能比較 67 4.3 聚丙烯腈與聚醯胺阻鹽層混摻氧化石墨烯之正滲透複合薄膜分析 68 4.3.1 場發式掃描電子顯微鏡之形貌分析 68 4.3.2 正滲透效能之分析 69 第五章 結論 87 參考文獻 89

    [1] Unesco, The United Nations World Water Development Report 2019: Leaving No One Behind, UNESCO, Paris, 2019.
    [2] G.D. Mehta, S. Loeb, Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis, Journal of Membrane Science, 4 (1978) 261-265.
    [3] M. Mulder, Basic principles of membrane technology, Springer Netherlands, Dordrecht, 1996.
    [4] I. Wenten, J. Ganesha, Ultrafiltration in water treatment and its evaluation as pre-treatment for reverse osmosis system, Institut Teknologi Bandung, (1996).
    [5] J.G. Wijmans, R.W. Baker, The solution-diffusion model: a review, Journal of Membrane Science, 107 (1995) 1-21.
    [6] Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, 63 (2003) 2223-2253.
    [7] F.E. Ahmed, B.S. Lalia, R. Hashaikeh, A review on electrospinning for membrane fabrication: challenges and applications, Desalination, 356 (2015) 15-30.
    [8] S. Zhang, F. Yang, Y. Liu, X. Zhang, Y. Yamada, K. Furukawa, Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45 C, Desalination, 194 (2006) 146-155.
    [9] S. Zhang, Y. Qu, Y. Liu, F. Yang, X. Zhang, K. Furukawa, Y. Yamada, Experimental study of domestic sewage treatment with a metal membrane bioreactor, Desalination, 177 (2005) 83-93.
    [10] S.-P. Tung, B.-J. Hwang, Synthesis and characterization of hydrated phosphor–silicate glass membrane prepared by an accelerated sol–gel process with water/vapor management, Journal of Materials Chemistry, 15 (2005) 3532-3538.
    [11] T. Van Gestel, H. Kruidhof, D.H. Blank, H.J. Bouwmeester, ZrO2 and TiO2 membranes for nanofiltration and pervaporation: Part 1. Preparation and characterization of a corrosion-resistant ZrO2 nanofiltration membrane with a MWCO< 300, Journal of Membrane Science, 284 (2006) 128-136.
    [12] M.A. Anderson, M.J. Gieselmann, Q. Xu, Titania and alumina ceramic membranes, Journal of Membrane Science, 39 (1988) 243-258.
    [13] J.A. Idarraga-Mora, A.S. Childress, P.S. Friedel, D.A. Ladner, A. Rao, S. Husson, Role of Nanocomposite Support Stiffness on TFC Membrane Water Permeance, Membranes, 8 (2018) 111.
    [14] T.C. M. Kumar, Y. Shen, Frontiers of engineering : reports on leading-edge engineering from the 2016 symposium, The National Academies Press, Washington, DC, 2017.
    [15] T. Matsuura, Synthetic membranes and membrane separation processes, CRC press, Boca Raton, 1993.
    [16] R. Boom, I. Wienk, T. Van den Boomgaard, C. Smolders, Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive, Journal of Membrane Science, 73 (1992) 277-292.
    [17] I. Pinnau, W.J. Koros, Influence of quench medium on the structures and gas permeation properties of polysulfone membranes made by wet and dry/wet phase inversion, Journal of Membrane Science, 71 (1992) 81-96.
    [18] R.E. Kesting, Synthetic polymeric membranes : a structural perspective, 2nd ed., Wiley, New York, 1985.
    [19] H. Matsuyama, M. Teramoto, R. Nakatani, T. Maki, Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology, Journal of Applied Polymer Science, 74 (1999) 171-178.
    [20] S.-J. Park, W. Choi, S.-E. Nam, S. Hong, J.S. Lee, J.-H. Lee, Fabrication of polyamide thin film composite reverse osmosis membranes via support-free interfacial polymerization, Journal of Membrane Science, 526 (2017) 52-59.
    [21] G.-Y. Chai, W.B. Krantz, Formation and characterization of polyamide membranes via interfacial polymerization, Journal of Membrane Science, 93 (1994) 175-192.
    [22] J. Wei, X. Liu, C. Qiu, R. Wang, C.Y. Tang, Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes, Journal of Membrane Science, 381 (2011) 110-117.
    [23] L. Shen, S. Xiong, Y. Wang, Graphene oxide incorporated thin-film composite membranes for forward osmosis applications, Chemical Engineering Science, 143 (2016) 194-205.
    [24] W. Jin, A. Toutianoush, B. Tieke, Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes, Langmuir, 19 (2003) 2550-2553.
    [25] S. Qi, C.Q. Qiu, Y. Zhao, C.Y. Tang, Double-skinned forward osmosis membranes based on layer-by-layer assembly—FO performance and fouling behavior, Journal of Membrane Science, 405 (2012) 20-29.
    [26] P.M. Johnson, J. Yoon, J.Y. Kelly, J.A. Howarter, C.M. Stafford, Molecular layer‐by‐layer deposition of highly crosslinked polyamide films, Journal of Polymer Science Part B: Polymer Physics, 50 (2012) 168-173.
    [27] S.-B. Kwon, J.S. Lee, S.J. Kwon, S.-T. Yun, S. Lee, J.-H. Lee, Molecular layer-by-layer assembled forward osmosis membranes, Journal of Membrane Science, 488 (2015) 111-120.
    [28] G.-R. Xu, S.-H. Wang, H.-L. Zhao, S.-B. Wu, J.-M. Xu, L. Li, X.-Y. Liu, Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes, Journal of Membrane Science, 493 (2015) 428-443.
    [29] 林佶鋒, 聚多巴胺/氧化石墨烯改良分子級逐層堆疊法於正滲透複合薄膜之應用, 國立清華大學材料科學工程學系, 臺灣新竹, 2019.
    [30] C. Klaysom, T.Y. Cath, T. Depuydt, I.F. Vankelecom, Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply, Chemical society reviews, 42 (2013) 6959-6989.
    [31] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis: principles, applications, and recent developments, Journal of Membrane Science, 281 (2006) 70-87.
    [32] S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis: opportunities and challenges, Journal of Membrane Science, 396 (2012) 1-21.
    [33] D. Li, X. Zhang, G.P. Simon, H. Wang, Forward osmosis desalination using polymer hydrogels as a draw agent: Influence of draw agent, feed solution and membrane on process performance, Water research, 47 (2013) 209-215.
    [34] R.L. McGinnis, M. Elimelech, Energy requirements of ammonia–carbon dioxide forward osmosis desalination, Desalination, 207 (2007) 370-382.
    [35] Y.-J. Choi, J.-S. Choi, H.-J. Oh, S. Lee, D.R. Yang, J.H. Kim, Toward a combined system of forward osmosis and reverse osmosis for seawater desalination, Desalination, 247 (2009) 239-246.
    [36] M.M. Ling, T.-S. Chung, Desalination process using super hydrophilic nanoparticles via forward osmosis integrated with ultrafiltration regeneration, Desalination, 278 (2011) 194-202.
    [37] L. Chen, Y. Gu, C. Cao, J. Zhang, J.-W. Ng, C. Tang, Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment, Water research, 50 (2014) 114-123.
    [38] B.D. Coday, P. Xu, E.G. Beaudry, J. Herron, K. Lampi, N.T. Hancock, T.Y. Cath, The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams, Desalination, 333 (2014) 23-35.
    [39] J. Li, D. Hou, K. Li, Y. Zhang, J. Wang, X. Zhang, Domestic wastewater treatment by forward osmosis-membrane distillation (FO-MD) integrated system, Water Science and Technology, 77 (2018) 1514-1523.
    [40] K. Lutchmiah, A. Verliefde, K. Roest, L.C. Rietveld, E. Cornelissen, Forward osmosis for application in wastewater treatment: a review, Water research, 58 (2014) 179-197.
    [41] A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation, Journal of Membrane Science, 343 (2009) 42-52.
    [42] K. Lee, R. Baker, H. Lonsdale, Membranes for power generation by pressure-retarded osmosis, Journal of Membrane Science, 8 (1981) 141-171.
    [43] J. Veerman, M. Saakes, S. Metz, G. Harmsen, Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water, Journal of Membrane Science, 327 (2009) 136-144.
    [44] R. Pattle, Production of electric power by mixing fresh and salt water in the hydroelectric pile, Nature, 174 (1954) 660-660.
    [45] V. Sant’Anna, L.D.F. Marczak, I.C. Tessaro, Membrane concentration of liquid foods by forward osmosis: process and quality view, Journal of Food Engineering, 111 (2012) 483-489.
    [46] K.B. Petrotos, P.C. Quantick, H. Petropakis, Direct osmotic concentration of tomato juice in tubular membrane–module configuration. II. The effect of using clarified tomato juice on the process performance, Journal of Membrane Science, 160 (1999) 171-177.
    [47] K.B. Petrotos, P. Quantick, H. Petropakis, A study of the direct osmotic concentration of tomato juice in tubular membrane–module configuration. I. The effect of certain basic process parameters on the process performance, Journal of Membrane Science, 150 (1998) 99-110.
    [48] S. Herbig, J. Cardinal, R. Korsmeyer, K. Smith, Asymmetric-membrane tablet coatings for osmotic drug delivery, Journal of Controlled Release, 35 (1995) 127-136.
    [49] G. Santus, R.W. Baker, Osmotic drug delivery: a review of the patent literature, Journal of Controlled Release, 35 (1995) 1-21.
    [50] J.R. McCutcheon, M. Elimelech, Modeling water flux in forward osmosis: implications for improved membrane design, AIChE journal, 53 (2007) 1736-1744.
    [51] N. Akther, A. Sodiq, A. Giwa, S. Daer, H. Arafat, S. Hasan, Recent advancements in forward osmosis desalination: a review, Chemical Engineering Journal, 281 (2015) 502-522.
    [52] F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environmental Science & Technology Letters, 1 (2013) 71-76.
    [53] A. Nguyen, L. Zou, C. Priest, Evaluating the antifouling effects of silver nanoparticles regenerated by TiO2 on forward osmosis membrane, Journal of Membrane Science, 454 (2014) 264-271.
    [54] S. Zhao, L. Zou, Relating solution physicochemical properties to internal concentration polarization in forward osmosis, Journal of Membrane Science, 379 (2011) 459-467.
    [55] N.T. Hancock, T.Y. Cath, Solute coupled diffusion in osmotically driven membrane processes, Environmental Science & Technology, 43 (2009) 6769-6775.
    [56] X. Song, Z. Liu, D.D. Sun, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Advanced materials, 23 (2011) 3256-3260.
    [57] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.
    [58] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications, Advanced materials, 22 (2010) 3906-3924.
    [59] A.K. Geim, K.S. Novoselov, The rise of graphene, in: Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific, 2010, pp. 11-19.
    [60] S.J. Rowley-Neale, E.P. Randviir, A.S.A. Dena, C.E. Banks, An overview of recent applications of reduced graphene oxide as a basis of electroanalytical sensing platforms, Applied Materials Today, 10 (2018) 218-226.
    [61] B.C. Brodie, XIII. On the atomic weight of graphite, Philosophical Transactions of the Royal Society of London, (1859) 249-259.
    [62] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (1958) 1339-1339.
    [63] L. Staudenmaier, Verfahren zur darstellung der graphitsäure, Berichte der deutschen chemischen Gesellschaft, 31 (1898) 1481-1487.
    [64] S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, R.S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide, Carbon, 49 (2011) 3019-3023.
    [65] G. Kalita, M. Tanemura, Fundamentals of Chemical Vapor Deposited Graphene and Emerging Applications, Graphene Materials: Advanced Applications, (2017) 41.
    [66] X. Song, L. Wang, L. Mao, Z. Wang, Nanocomposite membrane with different carbon nanotubes location for nanofiltration and forward osmosis applications, ACS Sustainable Chemistry & Engineering, 4 (2016) 2990-2997.
    [67] M.J. Park, S. Phuntsho, T. He, G.M. Nisola, L.D. Tijing, X.-M. Li, G. Chen, W.-J. Chung, H.K. Shon, Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes, Journal of Membrane Science, 493 (2015) 496-507.
    [68] M. Hu, B. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, Journal of Membrane Science, 469 (2014) 80-87.
    [69] F. Yan, C. Yu, B. Zhang, T. Zou, H. Zhao, J. Li, Preparation of freestanding graphene-based laminar membrane for clean-water intake via forward osmosis process, RSC advances, 7 (2017) 1326-1335.
    [70] 姜如芸, 聚多巴胺/氧化石墨烯複合膜應用於正向滲透之可行性研究, 國立清華大學材料科學工程學系, 臺灣新竹, 2017.
    [71] 蔡孟庭, 奈米碳管-聚丙烯腈-分子級逐層堆疊聚醯胺選擇層複合膜於正向滲透之應用, 國立清華大學材料科學工程學系, 臺灣新竹, 2018.
    [72] 簡明紳, 具蕾絲結構與底表面阻鹽層的聚丙烯腈複合膜在正滲透之應用, 國立清華大學材料科學工程學系, 臺灣新竹, 2018.
    [73] 李欣樺, 高耐化學性碳複合薄膜於正滲透系統之應用, 國立清華大學材料科學工程學系, 臺灣新竹, 2019.
    [74] T.Y. Cath, M. Elimelech, J.R. McCutcheon, R.L. McGinnis, A. Achilli, D. Anastasio, A.R. Brady, A.E. Childress, I.V. Farr, N.T. Hancock, Standard methodology for evaluating membrane performance in osmotically driven membrane processes, Desalination, 312 (2013) 31-38.
    [75] A. Tiraferri, N.Y. Yip, A.P. Straub, S.R.-V. Castrillon, M. Elimelech, A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes, Journal of membrane science, 444 (2013) 523-538.
    [76] N. Zaaba, K. Foo, U. Hashim, S. Tan, W.-W. Liu, C. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence, Procedia engineering, 184 (2017) 469-477.
    [77] H. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chemical physics letters, 287 (1998) 53-56.
    [78] M.-J. Yu, Y.-J. Bai, C.-G. Wang, Y. Xu, P.-Z. Guo, A new method for the evaluation of stabilization index of polyacrylonitrile fibers, Materials Letters, 61 (2007) 2292-2294.
    [79] L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, Journal of Electron Spectroscopy and Related Phenomena, 195 (2014) 145-154.
    [80] F. Wu, Y. Lu, G. Shao, F. Zeng, Q. Wu, Preparation of polyacrylonitrile/graphene oxide by in situ polymerization, Polymer international, 61 (2012) 1394-1399.
    [81] M. Qiu, J. Wang, C. He, A stable and hydrophilic substrate for thin-film composite forward osmosis membrane revealed by in-situ cross-linked polymerization, Desalination, 433 (2018) 1-9.
    [82] H.M. Hegab, A. ElMekawy, T.G. Barclay, A. Michelmore, L. Zou, C.P. Saint, M. Ginic-Markovic, Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation, Desalination, 385 (2016) 126-137.
    [83] I.L. Alsvik, M.-B. Hägg, Pressure retarded osmosis and forward osmosis membranes: materials and methods, Polymers, 5 (2013) 303-327.
    [84] A. Soroush, W. Ma, Y. Silvino, M.S. Rahaman, Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets, Environmental Science: Nano, 2 (2015) 395-405.
    [85] F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environmental Science & Technology Letters, 1 (2014) 71-76.
    [86] J.T. Arena, S.S. Manickam, K.K. Reimund, P. Brodskiy, J.R. McCutcheon, Characterization and performance relationships for a commercial thin film composite membrane in forward osmosis desalination and pressure retarded osmosis, Industrial & Engineering Chemistry Research, 54 (2015) 11393-11403.
    [87] J. Ren, J.R. McCutcheon, A new commercial thin film composite membrane for forward osmosis, Desalination, 343 (2014) 187-193.
    [88] M.-N. Li, X.-F. Sun, L. Wang, S.-Y. Wang, M.Z. Afzal, C. Song, S.-G. Wang, Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties, Desalination, 436 (2018) 107-113.

    QR CODE