簡易檢索 / 詳目顯示

研究生: 尤嘉正
Chia-Chen Yu
論文名稱: 模擬高介電材料在場效電晶體及快閃記憶體之應用
Simulation of MOSFET and Flash devices with High-K Material
指導教授: 張廖貴術
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 104
中文關鍵詞: 高介電
外文關鍵詞: FIBL
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著元件縮小,穿遂電流大幅提昇,High-K已是目前半導體產業相當熱門的一項議題,但是使用了High-K卻會對元件產生非預期的FIBL效應。本論文透由模擬軟體,模擬元件使用High-K材料後的FIBL效應,並提出高於K值50之後,FIBL效應會加劇約2.8倍。以及其他相關改善的方法,包含堆疊結構或是新的元件DTMOS的使用,也將探討熱門基板材料Ge搭配High-K會有較佳的效果,並模擬其它材料特性對其搭配High-K材料的影響,包含基底材料和High-K本身的電子遷移率、能隙大小以及能態密度跟電子親和力等,發現到Ge基底抑制FIBL材料是根據能隙較小和DOS較大的原因,而High-K材料本身能隙大小也是其影響的重要因素,真實High-K材料能隙較小,FIBL亦比模擬要為嚴重。
    而積體電路的另一重要分支便是記憶體,因此在論文的另一部份便是模擬快閃記憶體(Flash),並提出使用High-K材料可在相同EOT提高電荷保持力,以及面臨的困難有影響寫入跟抹除的能力。最後驗證新的元件結構『非對稱』(High-K/Low-k)和『對稱』(Low-K/High-K/Low-K)改善其問題,利用非對稱結構可大幅提昇寫入效率但抹除卻改善不多,而對稱結構卻可改善非對稱的缺陷。此外我們也模擬在上層絕緣層改用High-K材料,對其提高寫入和抹除效率,做其電荷耦合比和能障的討論,得到結論在上層固定EOT情形下,K值小於20會有最佳的效果。


    摘要…………………………………………………………………… Ⅰ 致謝…………………………………………………………………… Ⅱ 目錄…………………………………………………………………… Ⅲ 第一章 序論 1.1前言……………………………………………………… 1 1.2論文介紹………………………………………………… 4 第二章 模擬軟體操作方法與實驗步驟 2.1模擬軟體介紹…………………………………………… 5 2.2模擬結構介紹…………………………………………… 6 2.2.1場效電晶體模擬結構………………………………7 2.2.2快閃記憶體模擬結構………………………………8 2.3模擬步驟………………………………………………… 9 第三章 High-K MOSFET之FIBL分析模擬 3.1閘極介電層電流產生機制………………………………11 3.2邊緣導致能障下降之介紹………………………………13 3.3場效電晶體FIBL現象之驗證 ………………………… 16 3.4結構更改改善邊緣導致能障下降………………………23 3.4.1減少絕緣層厚度改善……………………………23 3.4.2使用緩衝層改善…………………………………24 3.4.3使用DTMOS改善 …………………………………29 3.5高介電材料場效電晶體之 FIBL 結論…………………32 第四章 不同基底和高介電材料特性分析討論 4.1材料特性改善邊緣導致能障下降………………………33 4.2基底參數調變……………………………………………34 4.2.1鍺基底和矽基底的比較…………………………34 4.2.2基底介電係數之比較……………………………38 4.2.3基底電子親和力之比較…………………………40 4.2.4基底能隙大小之比較……………………………43 4.2.5基底導帶能態密度之比較………………………45 4.2.6基底價帶能帶密度之比較………………………48 4.3高介電材料參數調變……………………………………51 4.3.1絕緣層電子親和力之比較………………………52 4.3.2絕緣層能隙大小之比較…………………………54 4.3.3絕緣層導帶能態密度之比較……………………58 4.3.4絕緣層價帶能帶密度之比較……………………59 4.4基底、絕緣層參數調變結論……………………………62 第五章 快閃記憶體搭配高介電分析模擬 5.1快閃記憶體元件結構與原理……………………………64 5.2快閃記憶體之寫入抹除機制……………………………68 5.3高介電材料應用快閃記憶體……………………………74 5.4模擬驗證和電性探討……………………………………78 5.4.1對稱結構和非對稱結構…………………………81 5.4.2非對稱結構調配比較……………………………86 5.4.3對稱結構調配比較………………………………89 5.5上層介電層使用高介電材料……………………………91 5.6快閃記憶體搭配高介電材料分析結論…………………96 第六章 結論…………………………………………………98 附錄 …………………………………………………………102 參考文獻 ……………………………………………………103

    [1]Moore’s Law 電子技術雜 http://www.openknowhow.com.tw/electron/html/
    [2] ITRS roadmap 2005 http://public.itrs.net/
    [3] Intel http://www.intel.com
    [4] MEDICI User Manual
    [5] Tarous Visual User Manual
    [6]賴成孝”一百奈米以下高介電常數閘絕緣層金氧半場效電晶體之邊緣能帶調變效應”國立清華大學電子所 2001 Page(s):3 ,39 ,41 ,45,49
    [7] G.C-F.Yeap, S.Krishnan, Ming-Ren Lin “Frining-Induced Barrier Lowering in Sub
    100nm-MOSFETs with High-K Gate dielectrics” IEEE Electronics Device Letters
    1998 Volume 34, Issue 11, 28 May 1998 Page(s):1150 –1152
    [8] Nihar R. Mohapatra, Madhav P. Desai and V. Ramgopal Rao ”Detailed Analysis of FIBL in MOS Transistors with High-K Gate Dielectrics” IEEE VLSI Design 16th International Conference on 4-8 Jan 2003 Page(s):99 - 104
    [9] S.M.Sze Semiconductor Device Physics and Technology(2nd Edition)Ch6 section3
    [10] Wenping Wang, Ru Huang, Shengqi Yang, Guoyan Zhang,Xing Zhang, Yangyuan Wang ” A novel idea: Using DTMOS to suppress FIBL effect in MOSFET with high-k gate dielectrics” Solid State Sciences Volume: 47, Issue: 10, October, 2003, Page(s). 1735-1740
    [11] Chen-Hsoao Lai , Ling-Chen Hu , Hai-Ming Lee , Long-Je Do,Ya-Chin King “New Stack Gate Insulator Structure Reduce FIBL effect Obviously”IEEE 2001 VLSI Technology, Systems, and Applications, 2001. Proceedings of Technical Papers. 2001 International Symposium on 18-20 April 2001 Page(s):216 - 219
    [12] S.C Lin and J.B.Kuo “Frining-Induced Barrier Lowering of 100nm FD SOI NMOS Devices with High Perimittivity Gate Dielectrics and LDD/Sidewall OxideSpacer” IEEE SOI Conference 2002 Page(s):93 - 94
    [13] Fariboz Assaderaghi, Stephen Parke, Dennis Sinitsky, Jeffrey Boker, Ping K.KO, Chenming Hu” A Dynamic Threshold Voltage MOSFET(DTMOS) for very Low voltage Operation” IEEE Electron Devices Letter, Volume 15, Issue 12, Dec. 1994 Page(s):510 - 512
    [14] 洪勝富清華大學碩士班課程”固態電子元件 93學年度”
    [15] Fukud “Optical Semiconductor Devices” 3rd ed 1995 Ch 1 section 3
    [16]林鴻志”奈米金氧半電晶體元件技術發展趨勢”奈米通訊雜誌No.7,2000
    [17] D.G Schlom and J.H. Haeni, MRS Bulletin 27 March 2002 Page(s):198-204
    [18] Mori, N. Arai, Y. Kaneko and K. Yoshikawa, “Polyoxide Thinning Limitation and Superior ONO Interpoly Dielectric for Nonvolatile Memory Device” ,IEEE Transactions on Electron Device , Vol. 38,NO.2,FEB, 1991.Page(s) :270-277
    [19] Mori, YY. Araki, M.Sato, H. Tsunoda, E. Kamiya and E. Sakagami, ”Thickness Scaling Limitation Factors of ONO Interpoly Dielectric for Nonvolatile Memory Devices”, IEEE Transactions on Electron Device ,Vol.1,1996 Page 47
    [20] S.M.Sze ”Physics of Semiconductor Devices”, John Wiley & Sons, 1981.
    [21] Stefan Lai, ”Tunnel Oxide and ETOX Flash scaling Limitation”, Intel Non Volatile Memory Technology conference, 1998.
    [22] K.T. San, C. Kaya and T.P Ma”Effect of Erase Source Bias on Flash EPROM Device Reliability”, IEEE Transactions on Electron Device,Vol.42,Issue:1,
    ,Jan 1995.Page(s)150
    [23] Jong Jin Lee, Xuguang Wang,Weiping Bai, Nan Lu and Dim-Lee Kwong
    ”Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric”, IEEE Transactions on Electron Devices ,2003 Page(s):2067 - 2072
    [24] B. Govoreanu, P. Blomme, J. Van Houdt and K. De Meyer, “Simulation of Nanofloating Gate Memory with High-k Stacked Dielectrics”, IEEE Electron Devices Letter, 2003 Page(s)299-302
    [25] B. Govoreanu, P. Blomme, M. Rosmeulen, J. Van Houdt and K. De Meyer, “VARIOT: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Devices Letter, VOL. 24,NO.2, FEBRUARY, 2003 Page(s) 99-101

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE