研究生: |
楊斯雲 Yang, Si-Yun |
---|---|
論文名稱: |
以Kepler資料庫對深度學習方法之研究 The Study of Deep Learning Methods Based on Kepler Data |
指導教授: |
葉麗琴
Yeh, Li-Chin |
口試委員: |
江瑛貴
Jiang, Ing-Guey 陳賢修 Chen, Shyan-Shiou |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 計算與建模科學研究所 Institute of Computational and Modeling Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 克卜勒 、深度學習 、卷積神經網路 、交叉驗證 、混淆矩陣 |
外文關鍵詞: | Kepler, Deep Learning, Convolutional Neural Network, Cross-Validation, Confusion Matrix |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們將下載的克卜勒資料[12],依據標準差大小分成三個模型,再以三個不同的機器學習模組(1D-CNN、2D-CNN-1、2D-CNN-2)對模型生成的資料庫進行訓練,進而希望透過這三個模組去尋找可能的系外行星。最後,我們發現標準差越大的模型其準確率較低,且在三個模組中以2D-CNN-2模組最佳。
在本論文中,我們發現在Kepler Q0的資料庫中,依據三種CNN的模組,並無找到任何系外行星。
In this thesis, we downloaded Kepler data [12] and divided into three models based on the magnitude of standard deviations. We used three different machine learning modules such as 1D-CNN, 2D-CNN-1 and 2D-CNN-2 to train the database generated by the model. It hopes to find possible exoplanets through these three modules. Finally, we found that the model with larger standard deviation has lower accuracy. Among the three modules, we found that the 2D-CNN-2 is the best module.
In this thesis, we used three kinds of CNN modules, and found that there is no any exoplanet in Kepler Q0 data set.
[1] Chintarungruangchai, P., & Jiang, G. (2019). Detecting Exoplanet Transits through Machine-learning Techniques with Convolutional Neural Networks. Publications of the Astronomical Society of the Pacific, 113(1000), 064502.
[2] Kohavi, R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. The International Joint Conference on Artificial Intelligence, 1137-1143.
[3] Mandel, K., & Agol, E. (2002). Analytic light curves for planetary transit searches. The Astrophysical Journal, 580(2), L171.
[4] Nikhil Ketkar, Deep Learning with Python, Springer,2017
[5] Shallue, C. J. & Vanderburg, A. (2018). Identifying Exoplanets with Deep Learning: A Five-planet Resonant Chain around Kepler-80 and an Eighth Planet around Kepler-90. The Astronomical Journal, 155(2), 94.
[6] Srivastava, N., et al. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15, 1929-1958.
[7] Yeh, C., & Jiang, G. (2020). Searching for Possible Exoplanet Transits from BRITE Data through a Machine Learning Technique. Publications of the Astronomical Society of the Pacific,133(1019), 014401.
[8] 陳輝樺,「找尋太陽系外行星的方法」,科博館訊,306,2013,7.
[9] 胡佳玲,「系外行星」,臺北星空,92,2019,8-12.
[10] 郭芷綺,「以機器學習法搜尋戲外行星的研究」,國立清華大學,碩士,109
[11] https://www.nasa.gov/kepler/missiontimeline
[12] https://exoplanetarchive.ipac.caltech.edu/bulk_data_download/
[13] https://www.natgeomedia.com/science/video/content-7744.html
[14] https://exoplanets.nasa.gov/alien-worlds/ways-to-find-a-planet/
[15] https://www.researchgate.net/figure/Dropout-neural-network-model-a-is-a-standard-neural-network-b-is-the-same-network_fig3_309206911