研究生: |
江欣霖 Chiang, Hsin-Lin |
---|---|
論文名稱: |
利用分子動力學電腦模擬研究聚穀氨醯胺及胰島素的現象 Studying Polyglutamine and Insulin by Molecular Dynamics Simulations in Silico |
指導教授: |
陳俊榮
Chen, Chun-Jung 胡進錕 Hu, Chin-Kun |
口試委員: |
林榮信
Jung-Hsin Lin 胡進錕 Chin-Kun Hu 牟中瑜 Chung-Yu Mou 羅榮立 Rong-Li Lo 周亞謙 Ya-Chang Chou 陳俊榮 Chun-Jung Chen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 98 |
中文關鍵詞: | 分子動力學 、蛋白質聚集 |
外文關鍵詞: | molecular dynamics, protein aggregation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,神經退化性疾病 (neurodegeneration disease) 的高罹病率使其在學界各領域受到相當高的關注。有許多的研究指出如阿茲海默症 (Alzheimer’s
disease)、帕金森氏症 (Parkinson’s disease)、亨丁頓跳舞症(Huntington’s disease) 等神經退化性疾病的病因皆來自不正常的蛋白質聚集 (abnormal protein aggregation)。然而,始終沒有研究確切指出人體內的蛋白質為何會聚集而造成神經退化性疾病的產生。在此篇論文中我將說明我如何使用分子動力學 (molecular dynamics) 模擬聚穀氨醯胺 (polyglutamine) 及胰島素 (insulin) 聚集的現象。聚穀氨醯胺的聚集已經被證實會造成漢廷頓舞蹈症,而胰島素的聚集則會造成糖尿病,此兩種疾病皆與神經退化性疾病有關。糖尿病二型 (type II diabetes) 雖然非神經退化性疾病,但其異常的胰島素聚集現象亦提高了神經退化性疾病的產生。利用電腦作分子動力學相較於實驗中的化學實驗是一種截然不同的方法,此方法使得科學家們有機
會觀察蛋白質在奈秒時間尺度下如何運動。為了瞭解聚穀氨醯胺如何聚集且形成 β-摺板 (β-sheet),我們利用複製交換分子動力學 (replica-exchange
molecular dynamics) 對一條及兩條聚穀氨醯胺胜肽做模擬,我們連結了十
個穀氨醯胺來作成聚穀氨醯胺胜肽。這是在已知的學術發表論文中第一次使用全原子複製交換分子動力學及具體水分子 (explcit water molecules)模擬聚穀氨醯胺胜肽。由我們的結果得知,兩條聚穀氨醯胺胜肽的結構會隨著分子間距離而改變。當其距離較長時,此兩條聚穀氨醯胺胜肽會形成螺旋 (helix) 或無規捲曲 (coil)。當其距離較短時,此兩條聚穀氨醯胺胜肽會偶發地形成胜肽內的 β 摺板 (intra-peptide β-sheet),最後形成胜肽間的 β-摺板 (inter-peptide β-sheet) 結構。我們也發現,聚穀氨醯胺二聚體偏好以反平行 β-摺板 (anti-parallel β-sheet) 的形式存在,此與目前已知的實驗結果相符。在第二個工作中,我使用統一原子 (united-atom) 分子動力學及顯性水分子研究體積較聚穀氨醯胺大的胰島素單體。目前已知研究指出胰島素可藉由疊加在 LVEALYL 胜肽上形成類澱粉纖維 (amyloid fibril)。此與胰島素穩定結合 (binding) 的 LVEALYL 胜肽來自胰島素的 B11-17 片段。我們發現,兩條 LVEALYL 胜肽會聚集而形成 β-摺板結構。由 molecular mechanic Poisson-Boltzman surface area(MM/PBSA) 方法我們亦可求得 LVEALYL 對胰島素的結合自由能相當強,此與已知結果相符。此外我們亦發現另一取自胰島素 B22-27 段的 RGFFYT 胜肽也有自我聚集現象且能與胰島素結合。
Study of neurodegenerative diseases is an important issue because of their high occurring rates all these years. Many reports indicated that neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease are all caused by abnormal protein aggregation. Type II diabetes is not a neurodegenerative disease, but its abnormal insulin aggregation can increase the probability of neurodegenerative diseases. It is still not clear how do these proteins assemble and lose their function in vivo.
In this thesis I’ll report our results about polyglutamine and insulin aggregation from molecular dynamics simulation. Aggregation of polyglutamine and insulin have been proved as the cause of several human diseases, in particular to Huntington’s disease and diabetes. Molecular dynamics simulation in silico let scientists able to reach the experimental environment which protein can aggregate immediately and observe protein aggregation
process under nanosecond time scale. To study how polyglutamine aggregate and form β-sheets, we employed replica-exchange molecular dynamics to simulate one and two polyglutamine peptides with ten glutamine residues.
It is the first time that polyglutamine peptides are simulated by all-atom force field replica-exchange molecular dynamics accompanied with explicit water molecules. Our results show that the structures of two polyglutamine
peptides are changed depending on their inter-peptide distance. When the inter-peptide distance between two polyglutamine peptides is large, two peptides formed helix or coil structures as in the case of one chain. While the
inter-peptide distance decreases, the intra-peptdie β-sheet structures appear as an intermediate state occasionally, and become the inter-peptide β-sheets in the end. We also found that the polyglutamine dimer tends to form the anti-parallel β-sheet conformations rather than the parallel one, which is
consistent with previous experiments. In my second project, I employed united atom force field molecular dynamics with explicit water molecules to simulate insulin monomer, which is larger than polyglutamine peptide. Previous research indicated that insulin formed amyloid fibril via stacking on the peptide LVEALYL. LVEALYL is the fragment B11-17 of insulin, it is binding well with insulin. Our results shows that two LVEALYL peptides could aggregate as a β-sheet. By molecular mechanic Poisson-Boltzmann surface area (MM/PBSA) method we estimated the binding free energy of LVEALYL to
insulin, the result of strong binding affinity is consistent with the previous research. We also found a peptide RGFFYT, the fragment B22-27 of insulin, can aggregate and bind to insulin monomer, too. In our results we showed that RGFFYT has comparable binding affinity to insulin as LVEALYL.
[1] Cyrus Levinthal. How to fold graciously. In J. T. P. Debrunnder and E. Munck, editors, Mossbauer Spectroscopy in Biological Systems: Proceedings of a meeting held at Allerton House, Monticello, Illinois, pages 22–24. University of Illinois Press, 1969.
[2] Andrej S˘ali, Eugene Shakhnovich, and Martin Karplus. How does a protein fold? Nature, 369:248–251, 1994.
[3] Nobuhiro Go. Theoretical studies of protein folding. Annu. Rev. Biophys. and Bioeng., 12(1):183–210, 1983.
[4] Peter E. Leopold, M. Mauricio Jos´e N, and Onuchic. Protein folding funnels - a kinetic approach to the sequence structure relationship. Proc. Natl. Acad. Sci., 18:8721–8725, 1992.
[5] Ken A. Dill, S. Banu Ozkan, M. Scott Shell, and Thomas R. Weikl. The protein folding problem. Annu. Rev. Biophys. Biomol. Struct., 37(1):289–316, 2008.
[6] Donna L. Hoyert and Jiaquan Xu. Deaths: Preliminary data for 2011. Natl. Vital. Stat. Rep., 61(6):1–52, 2012.
[7] Michel Goedert and Maria Grazia Spillantini. A century of Alzheimer’s disease. Science, 314(5800):777–781, 2006.
[8] Marcy E MacDonald and James F Gusella. Huntington’s disease: translating a CAG repeat into a pathogenic mechanism. Curr. Opin. Neurobiol., 6(5):638–643, 1996.
[9] H.L Paulson, M.K Perez, Y Trottier, J.Q Trojanowski, S.H Subramony, S.S Das, P Vig, J.-L Mandel, K.H Fischbeck, and R.N Pittman. Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron, 19(2):333–344, 2014.
[10] Christopher M. Dobson. Protein misfolding, evolution and disease. Trend. Biochem. Sci., 24(9):329 – 332, 1999.
[11] Christopher. M. Dobson. Protein folding and misfolding. nature, 426:884–890, 2003.
[12] Christian Weyer, P. Antonio Tataranni, Clifton Bogardus, and Richard E. Pratley. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care, 24(1):89–94, 2001.
[13] Michael Ristow. Neurodegenerative disorders associated with diabetes mellitus. J. Mol. Med., 82(8):510–529, 2004.
[14] Beena T. Koshy and Huda Y. Zoghbi. The CAG/polyglutamine tract
diseases: gene products and molecular pathogenesis. Brain Pathol., 7:927–942, 1997.
[15] F Ulrich Hartl, Hayer-Hartl, and Manajit. Converging concepts of protein folding in vitro and in vivo. Nat. Struct. Mol. Biol., 16:574–581, 2009.
[16] O. Sumner Makin and Louise C. Serpell. Minireview: Structures for amyloid fibrils. FEBS J., 272(23):5950–5961, 2005.
[17] Fabrizio Chiti and Christopher M. Dobson. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem., 75:333–366, 2006.
[18] Christopher M. Dobson. Protein folding and misfolding. Nature, 426:884–890, 2003.
[19] Stanley B. Prusiner, Michael R. Scott, Stephen J. DeArmond, and Fred E. Cohen. Prion protein biology. Cell, 93(3):337–348, 1998.
[20] Soonmin Jang, Jian-Min Yuan, Jungho Shin, Thomas J. Measey, Reinhard Schweitzer-Stenner, and Feng-Yin Li. Energy landscapes associated with the self-aggregation of an alanine-based oligopeptide (AAKA)4. J. Phys. Chem. B, 113(17):6054–6061, 2009.
[21] Wen-Jong Ma and Chin-Kun Hu. Molecular dynamics approach to aggregation of polymer chains with monomers connected by rigid bonds. J. Phys. Soc. Jpn., 79(5):054001, 2010.
[22] Rozita Laghaei and Normand Mousseau. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations. J. Chem. Phys., 132:165102, 2010.
[23] Chun-Lun Ni, Hoi-Ping Shi, Hui-Ming Yu, Yun-Chorng Chang, and Yun-Ru Chen. Folding stability of amyloid-Aβ40 monomer is an important determinant of the nucleation kinetics in fibrillization. FASEB J., 25(4):1390–1401, 2011.
[24] Nguyen Truong Co, Chin-Kun Hu, and Mai Suan Li. Dual effect of crowders on fibrillation kinetics of polypeptide chains revealed by lattice models. J. Chem. Phys., 138(18):–, 2013.
[25] Nai-Kuei Huang, Jung-Hsin Lin, Jiun-Tsai Lin, Chia-I Lin, Eric Minwei Liu, Chun-Jung Lin, Wan-Ping Chen, Yuh-Chiang Shen, Hui-Mei Chen, Jhih-Bin Chen, Hsing-Lin Lai, Chieh-Wen Yang, Ming-Chang Chiang, Yu-Shuo Wu, Chen Chang, Jiang-Fan Chen, Jim-Min Fang, Yun-Lian Lin, and Yijuang Chern. A new drug design targeting the adenosinergic system for huntington’s disease. PLOS ONE, 6:e20934, 2011.
[26] Magdalena I. Ivanova, Stuart A. Sievers, Michael R. Sawaya, Joseph S. Wall, and David Eisenberg. Molecular basis for insulin fibril assembly. Proc. Natl. Acad. Sci., 106:18990–18995, 2009.
[27] Andrew Leach. Molecular Modelling: Principles and Applications (2nd Edition). Prentice Hall, 2 edition, 2001.
[28] Daan Frenkel and Berend Smit. Understanding Molecular Simulation.
Academic Press, Inc., Orlando, FL, USA, 2nd edition, 2001.
[29] Stewart A. Adcock and J. Andrew McCammon. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev., 106(5):1589–1615, 2006.
[30] Yuji Sugita and Yuko Okamoto. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett, 314:141–151, 1999.
[31] Robert H. Swendsen and Jian-Sheng Wang. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett., 57:2607–2609, 1986.
[32] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637, 1983.
[33] J. G. Kirkwood. Statistical Mechanics of Fluid Mixtures. J. Chem. Phys., 3:300–313, 1935.
[34] M. Cecchini, F. Rao, M. Seeber, and A. Caflisch. Replica exchange molecular dynamics simulations of amyloid peptide aggregation. J. Chem. Phys, 121:10748–10756, 2004.
[35] Nguyen Hoang Phuong and Friederike Schmid. Local structure in nematic and isotropic liquid crystals. J. Chem. Phys., 119(1214-1222), 2003.
[36] Phuong H. Nguyen, Mai Suan Li, Gerhard Stock, John E. Straub, and D. Thirumalai. Monomer adds to preformed structured oligomers of Aβ-peptides by a two-stage dock-lock mechanism. Proc. Natl. Acad. Sci., 104(1):111–116, 2007.
[37] Robert W. Zwanzig. High temperature equation of state by a perturbation method. i. nonpolar gases. J. Chem. Phys., 22(8):1420–1426, 1954.
[38] John G. Kirkwood. Statistical mechanics of fluid mixtures. J. Chem. Phys., 3(5):300–313, 1935.
[39] Johan ˚A qvist, Carmen Medina, and Jan-Erik Samuelsson. A new method for predicting binding affinity in computer-aided drug design. Protein Eng., 7(3):385–391, 1994.
[40] Peter A. Kollman, Irina Massova, Carolina Reyes, Bernd Kuhn, Shuanghong Huo, Lillian Chong, Matthew Lee, Taisung Lee, Yong Duan, Wei Wang, Oreola Donini, Piotr Cieplak, Jaysharee Srinivasan, David A. Case, and Thomas E. Cheatham. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res., 33(889-897):889–897, 2000.
[41] Jed Pitera and Peter Kollman. Designing an optimum guest for a host using multimolecule free energy calculations: Predicting the best ligand for rebek’s “tennis ball”? J. Am. Chem. Soc., 120(30):7557–7567, 1998.
[42] Junmei Wang, Paul Morin, Wei Wang, and Peter A. Kollman. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. Journal of the American Chemical Society, 123(22):5221–5230, 2001.
[43] Michael Levitt, Christian Sander, and Peter S. Stern. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J. Mol. Biol., 181(3):423–447, 1985.
[44] David Van Der Spoel, ERik Lindahl, Berk Hess, Gerrit Groenhof, Alan E. Mark, , and Herman J. C. Berendsen. GROMACS: Fast, flexible, and free. J. Comp. Chem., 26:1701–1718, 2005.
[45] D. F. Shanno. Conditioning of quasi-newton methods for function minimization. Math. Comput., 24(111):647–656, 1970.
[46] Nathan A. Baker, David Sept, Simpson Joseph, Michael J. Holst, and J. Andrew McCammon. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci., 98(18):10037–10041, 2001.
[47] Hisashi Okumura, Satoru G. Itoh, and Yuko Okamoto. Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles. J. Chem. Phys., 126(8):084103, 2007.
[48] Hisashi Okumura and Yuko Okamoto. Multibaric-multithermal molecular dynamics simulation of alanine dipeptide in explicit water. Bull.
Chem. Soc. Jpn., 80(6):1114–1123, 2007.
[49] Hisashi Okumura and Yuko Okamoto. Temperature and pressure dependence of alanine dipeptide studied by multibaric-multithermal
molecular dynamics simulations. J. Phys. Chem. B, 112:12038–12049, 2008.
[50] Hisashi Okumura. Temperature and pressure denaturation of chignolin: Folding and unfolding simulation by multibaric-multithermal molecular
dynamics method. Proteins: Struct., Funct., Genet., 80(10):2397–2416, 2012.
[51] Hisashi Okumura and Satoru G. Itoh. Transformation of a design peptide between the α-helix and β-hairpin structures using a helix-strand replica-exchange molecular dynamics simulation. Phys. Chem. Chem. Phys., 15:13852–13861, 2013.
[52] Nobuyuki Nakajima, Haruki Nakamura, and Akinori Kidera. Multi-canonical ensemble generated by molecular dynamics simulation for enhanced conformational sampling of peptides. J. Phys. Chem. B, 101(5):817–824, 1997.
[53] Shuichi Nos´e. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52:255–268, 1984.
[54] Shuichi Nos´e. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81(1):511–519, 1984.
[55] William G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31(3):1695–1697, 1985.
[56] Shuichi Nos´e. An improved symplectic integrator for Nos´e-Poincar´e thermostat. J. Phys. Soc. Jpn., 70(1):75–77, 2001.
[57] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem. Phys., 72:2384–2393, 1980.
[58] Walter R. P. Scott, Philippe H. Hu1nenberger, Ilario G. Tironi, Alan E. Mark, Salomon R. Billeter, Jens Fennen, Andrew E. Torda, Thomas Huber, Peter Kru1ger, and Wilfred F. van Gunsteren. The GROMOS biomolecular simulation program package. J. Phys. Chem. A, 103(3596-3607), 1993.
[59] Todd J. Dolinsky, Paul Czodrowski, Hui Li, Jens E. Nielsen, Jan H. Jensen, Gerhard Klebe, and Nathan A. Baker. Pdb2pqr: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res., 35(suppl 2):W522–W525, 2007.
[60] Oleg Trott and Arthur J. Olson. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem., 31:455–461, 2010.
[61] Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth Huey, William E. Hart, Richard K. Belew, and Arthur J. Olson. Automated docking using a lamarckian genetic algorithm and an empirical binding free energy function. J. Comp. Chem., 19(14):1639–1662, 1998.
[62] Dmitrij Frishman and Patrick Argos. Knowledge-based protein secondary structure assignment. Proteins: Struct., Funct., Genet., 567:566–579, 1995.
[63] Gian Gaetano Tartaglia, Amol P. Pawar ans Silvia Campioni, Christopher M. Dobson, Fabrizio Chiti, and Michele Vendruscolo. Prediction of aggregation-prone regions in structured proteins. J. Mol. Biol., 380(2):
425–436, 2008.
[64] Gian Gaetano Tartaglia and Michele Vendruscolo. The zyggregator method for predicting protein aggregation propensities. Chem. Soc. Rev., 37(7):1395–1401, 2008.
[65] Roger A. Sayle and E.James Milner-White. RASMOL: biomolecular graphics for all. Trends Biochemical Sci., 20(9):374 – 376, 1995.
[66] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD - Visual Molecular Dynamics. Journal of Molecular Graphics and Modelling, 14:33–38, 1996.
[67] Schr¨odinger, LLC. The PyMOL molecular graphics system, version 1.3r1. PyMOL The PyMOL Molecular Graphics System, Version 1.3, 2010.
[68] Akira Kakizuka. Protein precipitation: a common etiology in neurodegenerative disorders? Trends Genet., 14(10):396–402, 1998.
[69] Max F. Perutz. Glutamine repeats and neurodegenerative diseases: molecular aspects. Trends Biochemical Sci., 24(2):58–63, 1999.
[70] Henry L. Paulson. Protein fate in neurodegenerative proteinopathies: polyglutamine diseases join the (mis)fold. Am. J. Hum. Genet., 64:339–345, 1999.
[71] Brigit E. Riley and Harry T Orr. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev., 20(16):2183–2192, 2006.
[72] Songming Chen, Frank A. Ferrone, and Ronald Wetzel. Huntington’s disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci., 99:11884–11889, 2002.
[73] Richard H. Myers, K. S. Marans, and Marcy E. MacDoanld. Huntington’s disease. In Robert D. Wells and Stephen T. Waren, editors, Genetic Instability and Hereditary Neurological Diseases, page 301. Academic, San Diego, 1998.
[74] Gregory Darnell, Joseph P.R.O. Orgel, Reinhard Pahl, and Stephen C. Meredith. Flanking polyproline sequences inhibit β-sheet structure in polyglutamine segments by inducing PPII-like helix structure. J. Mol. Bio., 374(3):688 – 704, 2007.
[75] D. Sharma, L. M. Shinchuk, H. Inouye, R. Wetzel, and D. A. Kirschner. Polyglutamine homopolymers having 8-45 residues form slablike β-crystallite assemblies. Proteins, 61:398–411, 2005.
[76] Max F. Perutz, John T. Finch, John. Berriman, and Arthur. Lesk. Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci., 99:5591–5595, 2002.
[77] S. Jonathan Singer and N. Nazneen Dewji. Evidence that Perutz’s double-β-stranded subunit structure for β-amyloids also applies to their channel-forming structures in membranes. Proc. Natl. Acad. Sci., 103:1546–1550, 2006.
[78] Martina Stork, Armin Giese, Hans A. Kretzschmar, and Paul Tavan. Molecular dynamics simulations indicate a possible role of parallel β-helices in seeded aggregation of poly-Gln. Biophys. J., 88(4):2442–2451, 2005.
[79] Pawel Sikorski and Edward Atkins. New model for crystalline polyglutamine assemblies and their connection with amyloid fibrils. Biomacro-molecules, 6:425–432, 2005.
[80] Rebecca Nelson, Michael R. Sawaya, Melinda Balbirnie, Anders ØMadsen, Christian Riekel, Robert Grothe, and David Eisenberg. Structure of the cross-β spine of amyloid-like fibrils. Nature, 435:773–778, 2005.
[81] T. R. Jahn, O. S. Makin, K. L. Morris, K. E. Marshall, P. Tian, P. Sikorski, and L. C. Serpell. The common architecture of cross-β amyloid. J. Mol. Biol., 395:717–727, 2010.
[82] Hajime Ogawa, Miki Nakano, Hirofumi Watanabe, E.B. Starikov, Stuart M. Rothstein, and Shigenori Tanaka. Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Comp. Bio. Chem., 32(2):102–110, 2008.
[83] Julien Maupetit, P. Tuffery, and Philippe Derreumaux. A coarse-grained protein force field for folding and structure prediction. Proteins: Struct., Funct., Genet., 69(2):394–408, 2007.
[84] M. Tanaka, I. Morishima, T. Akagi, T. Hashikawa, and N. Nukina. Intra- and intermolecular β-pleated sheet formation in glutamine-repeat inserted myoglobin as a model for polyglutamine diseases. J.
Biol. Chem., 276:45470–45475, 2001.
[85] Max F. Perutz, Tony Johnson, Masashi Suzuki, and John T Finch. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci., 91(12):5355–5358, 1994.
[86] Maciej Dlugosz and Joanna Trylska. Secondary structures of native and pathogenic Huntingtin N-terminal fragments. J. Phys. Chem. B, 115(40):11597–11608, 2011.
[87] Miki Nakano, Kuniyoshi Ebina, and Shigenori Tanaka. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations. J. Mol. Modeling, 19(4):1627–1639, 2013.
[88] Giulia Rossetti, Alessandra Magistrato, Annalisa Pastore, Francesca Persichetti, and Paolo Carloni. Structural properties of polyglutamine aggregates investigated via molecular dynamics simulations. J. Phys.
Chem. B, 112(51):16843–16850, 2008.
[89] A. K. Thakur, M. Jayaraman, R. Mishra, M. Thakur, V. M. Chellgren, I. J. Byeon, D. H. Anjum, R. Kodali, T. P. Creamer, J. F. Conway, A. M. Gronenborn, and R. Wetzel. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat. Struct. Mol. Biol., 16:380–389, 2009.
[90] Koji Hukushima and Koji Nemoto. Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn., 65(6):1604–1608, 1996.
[91] Satoru G. Itoh and Hisashi Okumura. Replica-Permutation method with the Suwa-Todo algorithm beyond the replica-exchange method. Journal of Chemical Theory and Computation, 9(1):570–581, 2013.
[92] Peter A. Kollman. Advances and continuing challenges in achieving realistic and predictive simulations of the properties of organic and biological molecules. Acc. Chem. Res., 29(10):461–469, 1996.
[93] A. D. MacKerell, D. Bashford, Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wi`orkiewicz-Kuczera, D. Yin, and M. Karplus. All-atom empirical potential formolecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 102(18):3586–3616, 1998.
[94] Valentina Tozzini. Coarse-grained models for proteins. Curr. Opin. Struc. Biol., 15(2):144–150, 2005. Theory and simulation/Macromolecular assemblages.
[95] Satoru G. Itoh and Hisashi Okumura. Hamiltonian replica-permutation method and its applications to an alanine dipeptide and amyloid-β(29-42) peptides. J. Comp. Chem., 34(29):2493–2497, 2013.
[96] Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roitberg, and Carlos Simmerling. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct., Funct., Genet., 65(3):712–725, 2006.
[97] William L. Jorgensen, Jayaraman Chandrasekhar, Jeffry D. Madura, Roger W. Impey, and Michael L. Klein. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 79(2):926–935, 1983.
[98] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. J. Chem. Phys, 98(12):10089–10092, 1993.
[99] T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna. Symplectic quaternion scheme for biophysical molecular dynamics. J. Chem. Phys., 116(20):8649–8659, 2002.
[100] M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible multiple time scale molecular dynamics. J. Chem. Phys., 97:1990–2001, 1992.
[101] T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. C. Hodgkin, D. A. Mercola, and M. Vijayan. Atomic Positions in Rhombohedral 2-Zinc Insulin Crystals. Nature, 231:506–511, 1971.
[102] Jens Brange, Lennanrt Anderson, Erik D. Laursen, Giorgio Meyn, and Eigil Rasmussen. Toward understanding insulin fibrillation. J. Pharm. Sci., 86:517–525, 1997.
[103] Liza Nielsen, Ritu Khurana, Alisa Coats, Sven Frokjaer, Jens Brange, Sandip Vyas, Vladimir N. Uversky, and Anthony L. Fink. Effect of environmental factors on the kinetics of insulin fibril formation: Elucidation of the molecular mechanism. Biochemistry, 40(20):6036–6046,
2001.
[104] F. Dische, C. Wernstedt, G. Westermark, P. Westermark, M. Pepys, J. Rennie, S. Gilbey, and P. Watkins. Insulin as an amyloid-fibril protein at sites of repeated insulin injections in a diabetic patient. Diabetologia, 31(3):158–161, 1988.
[105] K. R. Wilhelm, K. Yanamandra, M. A. Gruden, V. Zamotin, M. Malisauskas, V. Casaite, A. Darinskas, L. Forsgren, and L. A. Morozova-Roche. Immune reactivity towards insulin, its amyloid and protein S100B in blood sera of Parkinson’s disease patients. Eur. J. Neurol., 14:327–334, 2007.
[106] Dong-Pyo Hong and Anthony L. Fink. Independent heterologous fibrillation of insulin and its B-chain peptide. Biochemistry, 44(50):16701–16709, 2005.
[107] Glyn L. Devlin, Tuomas P. J. Knowles, Adam Squires, Margaret G. McCammon, Sally L. Gras, Melanie R. Nilsson, Carol V. Robinson, Christopher M. Dobson, and Cait E. MacPhee. The component polypeptide chains of bovine insulin nucleate or inhibit aggregation of the parent protein in a conformation-dependent manner. J. Mol. Biol., 360(2):497–509, 2006.
[108] Magdalena I. Ivanova, Michael J. Thompson, and David Eisenberg. A systematic screen of β2-microglobulin and insulin for amyloid-like segments. Proc. Natl. Acad. Sci., 103:4079–4082, 2006.
[109] Paula Tito, Ewan J. Nettleton, and Carol V. Robinson. Dissecting the hydrogen exchange properties of insulin under amyloid fibril forming conditions: A site-specific investigation by mass spectrometry. J. Mol. Biol., 303:262–278, 2000.
[110] Michael R. Sawaya, Shilpa Sambashivan, Rebecca Nelson, Magdalena I. Ivanova, Stuart A. Sievers, Marcin I. Apostol, Michael J. Thompson, Melinda Balbirnie, Jed J. W. Wiltzius, Heather T. McFarlane, Anders /O. Madsen, Christian Riekel, and David Eisenberg. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature, 447:453–457, 2007.
[111] Susan Tzotzos and Andrew J. Doig. Amyloidogenic sequences in native protein structures. Protein Sci., 19(2):327–348, 2010.
[112] Dirk Matthes, Vytautas Gapsys, Venita Daebel, and Bert L. de Groot.
Mapping the conformational dynamics and pathways of spontaneous steric zipper peptide oligomerization. PLOS ONE, 6(5):e19129, 2011.
[113] Yeh-Fon Lin, Jian-Hua Zhao, Hsuan-Liang Liu, Kung-Tien Liu, Jenn-Tzong Chen, Wei-Bor Tsai, and Yih Ho. Structural stability and aggregation behavior of the vealyl peptide derived from human insulin: A molecular dynamics simulation study. Biopolymers, 94(3):269–278, 2010.
[114] Yen-Fon Lin, Jian-Hua Zhao, Hsuan-Liang Liu, Josephine W. Wu, Chih-Kuang Chuang, Kung-Tien Liu, Hsin-Yi Lin, Wei-Bor Tsai, and Yih Ho. Insights into the structural stability and possible aggregation pathways of the lyqlen peptides derived from human insulin. J. Taiwan Inst. Chem. Engineers, 42(3):394–401, 2011.
[115] Berk Hess, Carsten Kutzner, David van der Spoel, and Erick Lindahl. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput, 4:435–447, 2008.
[116] Leonard F. Pease, Mirco Sorci, Suvajyoti Guha, De-Hao Tsai, Michael R. Zachariah, Michael J. Tarlov, and Georges Belfort. Probing the nucleus model for oligomer formation during insulin amyloid fibrillogenesis. Biophys. J., 99:3979–3985, 2010.
[117] Govardhan Reddy, John E. Straub, and D. Thirumalai. Influence of
preformed Asp23-Lys28 salt bridge on the conformational fluctuations
of monomers and dimers of Aβ peptides with implications for rates of fibril formation. J. Phys. Chem. B, 113(4):1162–1172, 2009.
[118] Mai Suan Li, Nguyen Truong Co, Govardhan Reddy, Chin-Kun Hu, J. E. Straub, and D. Thirumalai. Factors governing fibrillogenesis of polypeptide chains revealed by lattice models. Phys. Rev. Lett., 105(21):218101, 2010.
[119] Wilfred F. Van Gunsteren. Biomolecular Simulation: GROMOS96 Manual and User Guide. Verlag der Fachvereine Hochschulverlag AG an der ETH Zurich, Zurich, 1996.
[120] Phuong H. Nguyen, Gerhard Stock, Emil Mittag, Chin-Kun Hu, and Mai-Suan Li. Free energy landscape and folding mechanism of a β-hairpin in explicit water: A replica exchange molecular dynamics study. Proteins: Structure, Function, and Genetics, 61(4):795–808, 2005.
[121] Hoang Bao Nam, Maksim Kouza, Hoang Zung, and Mai Suan Li. Relationship between population of the fibril-prone conformation in the monomeric state and oligomer formation times of peptides: Insights from all-atom simulations. J. Chem. Phys., 132(16):165104, 2010.
[122] Phuong Hoang Nguyen, Philippe Derreumaux, and Mai Suan Li. Effects of all-atom force fields on amyloid oligomerization: Replica exchange molecular dynamics simulations of the Aβ16-22 dimer and trimer. Phys. Chem. Chem. Phys., 13(20):9778–9788, 2011.
[123] R. W. Hockney, S. P. Goel, and J. Eastwood. Quite high resolution computer models of plasma. J. Comp. Phys, 14(2):148–158, 1974.
[124] Berk Hess, Henk Bekker, Herman J. C. Berendsen, and Johanness G. E. M. Fraaije. LINCS: A linear constraint solver for molecular simulations. J. Comp. Chem, 18(12):1463–1472, 1997.
[125] Giovanni Bussi, Davide Donadio, and Michele Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys, 126(1):014101, 2007.
[126] H. J. C. Berendsen, J. P. M. Postma, W. F. Vangunsteren, A. Dinola, and J. R. Haak. Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81:1463–1472, 1984.
[127] Jean L. Whittingham, David J. Scott, Karen Chance, Ashley Wilson, John Finch, Jens Brange, , and G. Guy Dodson. Insulin at ph 2: Structural analysis of the conditions promoting insulin fibre formation. J. Mol. Biol., 318:479–490, 2002.
[128] Michel F. Sanner. Python: A programming language for software intergration and development. J. Mol. Graphics Mod, 17:57–61, 1999.
[129] Man Hoang Viet, Son Tung Ngo, Nguyen Sy Lam, and Mai Suan Li.
Inhibition of aggregation of amyloid peptides by β-sheet breaker peptides and their binding affinity. J. Phys. Chem. B, 115(22):7433–7446, 2011.
[130] Dmitri K. Klimov and D. Thirumalai. Dissecting the assembly of Aβ16-22 amyloid peptides into antiparallel β sheets. Structure, 11(3):295–307, 2003.
[131] V. I. Timofeev, R. N. Chuprov-Netochin, V. R. Samigina, V. V. Bezuglov, K. A. Miroshnikov, and I. P. Kuranova. X-ray investigation of gene-engineered human insulin crystallized from a solution containing polysialic acid. Acta Crystallographica F, 66:259–263, 2010.
[132] Yung-Chi Cheng and Willian H. Prusoff. Relationship between the inhibition constant (k_i) and the concentration of inhibitor which causes 50 per cent inhibition (i 50 ) of an enzymatic reaction. Biochem. Pharmacol., 22(23):3099–3108, 1973.