簡易檢索 / 詳目顯示

研究生: 邱韻哲
Yun-Che Chiu
論文名稱: 返馳切換式整流器之開發及其切換控制
Development of a Flyback Switch Mode Rectifier anf Its Switching Controls
指導教授: 廖聰明
Chang-Ming Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 117
中文關鍵詞: 切換式整流器功因校正返馳式轉換器電流控制平均電流控制電荷調控可變切換頻率電壓控制
外文關鍵詞: switch-mode rectifier, power factor correction, flyback converter, current control, average current control, charge-regulated control, varying switching frequency, voltage control, quantitative controller design
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研製單級返馳切換式整流器(SMR),並從事兩種電流控制及其性能比較評估。首先探究電力品質相關事務、現有切換式整流器電路及各式電流模式控制方法。接著從事操作於非連續模式返馳切換式整流器之分析、設計、電路實現及其控制。為便於電路元件之設計選擇,返馳切換式整流器組成關鍵元件之額定值將予以詳細推導。在動態控制研究上,首先從事應用開關電流之平均電流控制。接著介紹所提之變頻電荷調節電流控制切換機構,其開關導通時間為定值,而開關截止時間由低通濾波之開關電流與其命令比較之結果定之,電流命令係由外電壓迴路調控電壓迴授誤差得之。所提電流控制機構無需動態電流控制與從事斜率補償,且具有電流諧波頻譜較分散分佈、強健之電流追蹤控制性能及可應用市售之電壓至頻率轉換積體電路實現等優點。在電壓迴授控制上,本論文推演出一系統化步驟,以從事其動態模式估測,再進而量化設計求出電壓迴授控制之參數。最後,以一些模擬及實測結果展示所建構切換式整流器之性能及所提控制法則之有效性。在本篇論文中建構完成單級單開關切換式整流器,並提出兩種開關電流控制方法。藉由論文探究及回顧,可得知返馳切換式整流器可提供廣範圍且具隔離之輸出直流電。因此,在單級且具良好電力品質調控之交流至直流前端轉換器的使用上是相當不錯的選擇。藉由對於關鍵元件之推導,實現一操作於不連續導通模式下之返馳切換式整流器。為了使切換式整流器獲得良好之電力品質而使用兩種電流控制結構。第一種方法是利用開關電流實現之平均電流控制,另一種是根據電荷調節電流控制的方式來完成。兩種控制方法都可以獲得不錯的電力品質及直流輸出電壓之調控。最後利用模擬及實作之結果來驗證靜態及動態的操作特性。
    雖然在返馳切換式整流器之實作上獲得不錯的結果,但仍有許多值得繼續研究之課題: (i) 增進能量轉換之效率; (ii) 發展可以使電流頻譜更分散分佈之變頻式電流控制應用於切換式整流器 (iii)對於切換式整流器之非線性行為做更詳細的研討 (iv) 探討返馳切換式整流器可能的應用。


    This thesis presents the development of a single-stage flyback switch-mode rectifier (SMR) and performs the comparative study of two current-mode control approaches. The general issues concerning power quality, survey of existing SMR circuits and current mode control methods are first explored. Then the analysis, design, implementation and control of a flyback SMR under discontinuous conduction mode (DCM) are made. For facilitating the circuit component design, the ratings of flyback SMR circuit components are derived in detail. As to the dynamic control studies, the average current control using switch current is first made. Then a varying-frequency charge-regulated approach is developed. Wherein the switch turn-on time is fixed and the off time instant is determined by the low-pass filtered switch current and the current command generated from the outer voltage loop. No dynamic current control and slope compensation are needed. The proposed control scheme possesses the advantages of having dispersedly distributed harmonic spectrum, robust current tracking control, ease of implementation using off-the-shelf integrated circuits, etc. In voltage control loop, the dynamic model is estimated. Then the quantitative feedback controller design is performed by the developed design procedure. Some simulated and experimental results are given to demonstrate the performance of the established SMRs and the effectiveness of the developed control methods.

    ACKNOWLEDGEMENT…………………………………………………………. I ABSTRACT………………………………………………………………..……… II LIST OF CONTENTS……………………………………………………………... III LIST OF FIGURES………………………………………………………………... V LIST OF TABLES…………………………………………………………………. IX CHAPTER 1 INTRODUCTION……………………………………………….. 1 CHAPTER 2 POWER QUALITY BASICS………...…………………………. 5 2.1 Introduction……………………………………………………… 5 2.2 Terms, Definitions and Regulations of Power Quality.………..... 5 2.2.1 Power Quality Terms and Definitions……………………... 5 2.2.2 Harmonic Current Regulations………………………………. 10 2.3 Power Factor Correction by Filtering…………............................. 17 2.4 Switch-Mode Rectifier…..………………………………………. 19 CHAPTER 3 FUNDAMENTALS OF SWITCH-MODE RECTIFIERS............ 22 3.1 Introduction……………………………………………………… 22 3.2 The Application of SMR in DPA and IBA..…………………….. 22 3.3 Some Commonly Used SMRs…………….…………………….. 24 3.4 Basic Control of a SMR..………………………………………... 33 3.4.1 Ideal SMR……...…………………...................................... 33 3.4.2 Actual SMR……………………………………………….. 34 3.5 Control Approaches……………................................................... 35 CHAPTER 4 FLYBACK SWITCH-MODE RECTIFIER……...……………… 42 4.1 Introduction……………………………………………………… 42 4.2 An Ideal Flyback SMR.....……………………………………….. 42 4.3 Current Ratings of an Actual Flyback SMR under CCM with Fixed Switching Frequency……………………………………… 45 4.4 Current Ratings of an Actual Flyback SMR under DCM with Fixed Switching Frequency……………………………………… 48 CHAPTER 5 THE DEVELOPED FLYBACK SMR………………………….. 53 5.1 Introduction……………………………………………………… 53 5.2 Fixed-Frequency Average Current Controlled Flyback SMR …... 53 5.2.1 System Configuration and Operation……………………… 53 5.2.2 Circuit Analysis and Design……………………………….. 55 5.2.3 Control Schemes…………………………………………... 61 5.2.4 Realizations of Circuits and Control Schemes 68 5.2.5 Simulation Results………………………………………… 71 5.2.6 Experimental Results……………………………………… 77 5.3 Varying-Frequency Charge-Regulated Current-Controlled Flyback SMR……………………………………………………. 90 5.3.1 System Configuration and Operation……………………… 90 5.3.2 Estimation of Instantaneous Switching Frequency and Duty Ratio……………………………………………………….. 90 5.3.3 Component Ratings and Circuit Implementation………….. 95 5.3.4 Simulation Results………………………………………… 95 5.3.5 Experimental Results……………………………………… 100 CHAPTER 6 CONCLUSIONS………………………………………………… 108 REFERENCES………………………………………………… 109

    REFERENCES
    A. Single-Phase PFC
    [1]
    R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Kluwer Academic Publishers, Norwell Massachusetts, 2001.1001

    [2] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New York, John Wiley & Sons, Inc., 2003.
    [3] IEC 1000-3-2, International Standard, Part 3: Limits-Section 2: Limit for harmonic current emission (equipment input current 16A per phase), 1995.

    [4] L. Moran, P. Werlinger, J. Dixon and R. Wallace, “ A Series active power filter which compensates current harmonics and voltage unbalance simultaneously,” Proc. IEEE PESC ’95, 1995, pp. 222-227.
    [5] L. Malesani, L. Rossetto and P. Tenti, “Active power filter with hybrid energy storage,” IEEE Trans. Power Electron., vol. 6, pp. 392-397, 1991.
    [6] M. V. Ataide and J. A. Pomilio, “Single-phase shunt active filter: a design procedure considering harmonics and EMI standards,” Proc. IEEE ISIE ’97, 1997, vol. 2, pp. 422-427.
    [7] H. Fujita and H. Akagi, “The unified power quality condition: the integration of series-and shunt-active filter,” IEEE Trans. Power Electron., vol. 13, pp.315-322, 1998.
    [8]
    D. H. Chen and S. J. Xie, “Review of the control strategies applied to active power filters,” in Proc. IEEE DRPT’04, vol. 2, pp. 666-670, 2004.

    B. Switch-mode rectifiers
    [9] A. Kandianis and S. N. Manisa, “A comparative evaluation of single-phase SMR converters with active power factor correction,” in Proc. IEEE IECON’94, pp. 244-249, 1994.

    [10] J. Sebastian, M. Jaureguizar and M. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” in Proc. IEEE IECON’94, pp. 1688-1693, 1994.
    [11] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon’98, pp. 348-353, 1998.
    [12] B. Singh, B. N. Singh, A. Chandra, K. AL-Haddada, A. Pandey and D. P. Kothar. “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, pp. 962-981, 2003.
    [13] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, pp. 749-755, 2003.
    [14] M. S. Dawande ans G. K. Dubey, “Single phase switch mode rectifiers,” IEEE PEDS’96, pp. 637-543, 1996.
    [15] M. H. L. Chow, C. K. Tse and Y. S. Lee, “An efficient PFC voltage regulator with reduced redundant power processing,” in Proc. IEEE APEC’00, vol. 1, pp. 87-92, 1999.
    [16] T. Yoshida, O. Shizuka, O. Miyashita and K Ohniwa, “An improvement technique for the efficiency of high-frequency switch-mode rectifiers,” IEEE Trans. Power Electron., vol. 15, pp. 1118-1123, 2000.
    [17] C. M. Liaw, T. H. Chen and W. L. Lin, “Dynamic modeling and control of a step up/down switching-mode rectifier,” Proc. IEE, vol. 146, pp. 317-324, 1999.
    [18] K. Taniguchi, N. Kimura, Y. Takeda, S. Morimoto and M. Sanada, “A Novel PAM Inverter for Induction Motor Drive,” Proc. Power Electronics and Drive Systems, vol. 1, pp. 129-134, 1995.
    [19] B. Singh, B. P. Singh and M. Kumar, “PFC converter fed PMBLDC motor drive for air conditioning.” IE(I) Journal-EL, vol. 84, pp. 22-27, June 2003.
    [20] H. Endo, T. Yamashita and T. Sugiura, “A high power-factor buck converter,” Proc. IEEE PESC’92, 1992, pp. 1071-1076.
    [21] G.. Spiazzi, “Analysis of Buck Converters Used as Power Factor Preregulators,” Proc. IEEE PESC’97, 1997, pp. 564-570.
    [22] J. Cardesin, J. Sebastian, P. Villegas, M. Hernando and A. Fernandez, “Average small-signal model of buck converter used as power factor preregulator,” Proc. Industry Applications Conference, 2002, vol. 3, pp.2147-2151.
    [23] Q. Zhao, F. Tao, P. Xu, J. Wei and F. C. Lee, “Improving performance of continuous current mode boost converters for power factor correction,” Proc. IEEE PESC’01, 2001, pp. 624-647.
    [24] T. Iida, G. Majumdar, H. Mori and H. Iwamoto, “Constant output voltage control method for buck-boost type switched mode rectifier with fixed switching pulse pattern,” Proc. IEEE ICIT ’96, 1996, pp. 266-268.
    [25] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” Proc. IEEE IECON ’02, 2002, vol. 1, pp. 30-36.
    [26] J. Chen, D. Maksimovic and R. Erickson, “A new low-stress buck-boost converter for universal-input PPC applications,” Proc. IEEE APEC ’01, 2001, vol. 1, pp.343-349.
    [27] J. Chen, D. Maksimovic and R. Erickson, “Buck-boost PWM converters having two independently controlled switches,” Proc. IEEE PESC ’01, 2001, vol. 2, pp. 736-741.
    [28] A. R. Prasad, P. D. Ziogas and S. Manias, “A new active power factor correction method for single-phase buck-boost ac-dc converter,” Proc. IEEE APEC ’92, 1992, pp. 841-820.
    [29] Y. Nishida, S. Motegi and A. Maeda, “A single-phase buck-boost AC-to-DC converter with high-quality input and output waveforms,” Proc. IEEE ISIE ’95, 1995, vol. 1, pp. 433-438.
    [30] O. Lopez, L. Garcia de Vicuna, M. Castilla, J. Matas and M. Lopez, “Sliding-mode-control design of a high-power-factor buck-boost rectifier,” IEEE Trans. Ind. Electron., vol. 46, pp. 604-612, 1999.
    [31] B. S. Lee and R. Krishnan, “A variable voltage converter topology for permanent-magnet brushless DC motor drives using buck-boost front-end power stage,” Proc. IEEE ISIE ’99, 1999, vol. 2, pp. 689-694.

    [32] W. Guo and P. K. Jain, “A power-factor-corrected AC-AC inverter topology using a unified controller for high-frequency power distribution architecture,” IEEE Trans. Ind. Electron., vol. 51, pp. 874-883, 2004.
    [33] L. Brush, “Distributed power architecture demand characteristics,” Proc. IEEE APEC ’04, 2004, vol. 1, pp. 342-345.
    [34] P. Lindman, “Powering tomorrow’s data internetworking system,” Proc. IEEE INTELEC ’00, 2000, pp.506-511.
    [35] L. C. G. de Freitas, E. E. A. Coelho, J. B. Vierira Jr., M. G. Simoes and L. C. de Freitas, “A single-stage PFC converter applied as an electronic ballast for fluorescent lamps,” Proc. IEEE APEC ’04, 2004, vol. 1, pp. 164-169.
    [36] M. Ponce, A. J. Martinez, J. Correa and J. Arau, “Evaluation of an improved input current shaper used as power factor corrector in electronic ballast,” in Proc. IEEE ISCAS’02, vol. 4, pp. 349-352, 2002.
    [37] P. Cheesman, “Why IBAs Work Beter For You,” C&D Technologies, Inc. www.nuhorizons.com/FeaturedProducts/Volume3/articles/C&DTech_Article.pdf

    [38] M. Brkovic and S. Ćuk, “Input current shaper using Ćuk converter,” IEEE INTELEC, Oct.1992, pp. 532-593.
    [39] H. Y. Kanaan, and K. Al-Haddad, “A comparative analysis of nonlinear current control schemes applied to a SEPIC power factor corrector,” Proc, IEEE IECON, 2005, pp. 1104-1109.
    [40] H. Wei and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” Proc. IEEE Southeastcon’98, pp. 348-353, 1998.

    C. Flyback SMRs
    [41] R. Erickson and M. Madigan, “Design of a simple high-power-factor rectifier based on the flyback converter,” Proc. IEEE APEC, 1990, pp. 792-801.
    [42] W. Tang, Y. H. Jiang, G.C. Verghese and F.C Lee, “Power factor correction with flyback converter employing charge control,” Proc. IEEE APEC, 1993, pp. 293-298.
    [43] N. Backman and T. Wolpert, “Simplified single stage PFC including peak current mode control in a flyback converter,” in Telecommunications Energy Conference, pp.317-324, 2000.
    [44] J. Sebastian, A. Fernandez, P. Villegas, J. A. Martinez and E. de la Cruz, “A New Low-Cost control technique for power factor correctors operating in continuous conduction mode,” Proc. IEEE PESC’02, pp. 1132-1136, 2002.

    [45] T. Tanitteerapan and S. Mori, “An input current shaping technique for PFC flyback rectifier by using inductor voltage detection control method,” in Electrical and Electronic Technology, vol. 2, pp. 799-803, 2001.
    [46] C. Adragna, “Design equations of high-power-factor flyback converter based on the L6561,” AN1059 STMicroelectronics.
    [47] D. Dalal and O. Meilhon, “A single stage PFC+PWM converter for 75-150W distributed power system,” ON Semiconductor, USA.
    [48] P. N. Papanikolaou, C. E. Tatakis, A. C. Kyritsis, “Design of PFC AC/DC flyback converter for low voltage applications,” Proc. European Power Electronics and Applications, 2005, pp.1-10 .
    [49] D. Dah-Chuan Lu, D. Ki-Wai Cheng and Yim-Shu Lee, “Single-switch flyback power-factor-corrected ac/dc converter with loosely regulated intermediate storage capacitor voltage,” Proc. IEEE Circuits and Systems, 2003, pp. 264-267.

    [50] J. J. Zheng, A. Shteynberg, D. Zhou and J. McCreary, “A novel multimode digital control approach for single-stage flyback power supplies with power factor correction and fast output voltage regulation,” Proc. IEEE APEC’05, 2005, pp. 830-836.
    [51] J. Jovalusky, “Low-cost energy-efficient SMPS delivers up to 90W peak from an EE-25 core transformer,” Proc. IEEE APEC, 2006, pp. 254-260.
    [52] Y. Zheng and G. Moschopoulos, “Design considerations for a new AC-DC single stage flyback converter,” Proc. IEEE APEC’06, 2006, pp. 400-406.
    [53] S. K. Mishra, B. G. Fernandes and K. Chatterjee, “Single stage single switch AC/DC converters with high input power factor and tight output voltage regulation,” Proc. IECON, 2004, pp. 2690-2695.
    [54] B. Prakash and S. Parakash, “Analysis of high DC bus voltage stress in the design of single stage single switch switching mode rectifier,” Proc. IEEE ISIE, 2005, pp. 505-511.
    [55] D. S. Beyragh, S. M. Sayedi and H. R. Karshenas, “A novel digital voltage controller for single-phase PFC rectifiers,” Proc. IEEE CCECE/CCGEI, 2006, pp. 887-890.
    [56] W. Qiu, W. Wu, S. Luo, P. Kornetzky and I. Batarseh, “Practical design considerations of a single-stage single-switch parallel PFC converter for universal voltage applications,” Proc. Industry Applications Conference, 2002, vol. 3, pp. 2133-2140.
    [57] C. Qiao and K. M. Smedley, “A topology survey of single-stage power factor corrector with a boost type input-current-shaper,” IEEE Trans. Power Electron.,vol. 16 no. 3, pp. 360-368, 2001.
    [58] N. P. Papanikolaou and E.C. Tatakis, “Minimisation of power losses in PFC flyback converters operating in the continuous conduction mode,” Proc. IEE-Electr. Power Appl., July 2002, vol. 149, no. 4, pp.283-291.
    [59] C. Larouci, J. P. Ferrieux, L. Gerbaud, J. Roudet and J. Barbaroux, “Control of a flyback converter in power factor correction mode: Compromize between the current constraints and the transformer volume,” Proc. IEEE APEC, 2002, pp. 722-727.
    [60] J. Hoyo, J. Arau, C. Aguilar and E. Martinez, “Flyback-based PFC converter with sinusoidal output for use in AC UPS,” Proc. IEEE CIEP, Oct. 2002, pp. 177 - 181.
    [61] E. J. Rikos, E.C. Tatakis, “Single-stage single-switch isolated PFC converter with non-dissipative clamping,” Proc. IEE-Electr. Power Appl., March 2005, vol. 152, no. 2, pp. 166 – 174.

    D. Component Rating Assessment
    [62] R. Redl and L. Balogh, “RMS, DC, peak, and harmonic currents in high-frequency power-factor correctors with capacitive energy storage,” in Proc. IEEE APEC’92, pp. 533-540, 1992..
    [63] J. J. Spangler and A. K. Behera, “A comparison between hysteretic and fixed frequency boost converters used for power factor correction,” in Proc. IEEE APEC ’93, PP.281-286, 1993.
    [64] J.S. Lai and D. Chen, “Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous mode,” in Proc. IEEE APEC ’93, pp. 267-273, 1993.

    E. Dynamic control
    [65] E. Rodriguez, O. Garcia, J. A. Cobos, J. Arau and J. Uceda, “A single-stage rectifier with PFC and fast regulation of output voltage,” in Proc. IEEE CIEP ’98, pp. 30-36, 1998.
    [66] D. S. L. Simonetti, J. Sebastian and J. Uceda, “A small-single model for SEPIC, Ćuk and flyback converters as power factor preregulators in discontinuous conduction mode,” in Proc. IEEE PESC ’93. pp. 735-741, 1993.
    [67] M. C. Ghanem, K. Al-Haddad and G. Roy, “A new control strategy to achieve sinusoidal line current in a cascade buck-boost converter,” IEEE Trans. Ind. Electron., vol. 1,pp. 350-356, 2001.
    [68] G.. K. Andersen and F. Blaabjerg, “Current programmed control of a single phase two-switch buck-boost power factor correction circuit,” in Proc. IEEE APEC ’01, PP. 350-356, 2001.
    [69] B. Raymond and J. Sepe, “A unified approach to hysteretic and ramp-comparison current controllers,” in Conf. Rec. IEEE-IAS Annu. Meeting, pp. 724-731, 1993.
    [70] C. A. Canesin and I. Barbi, “Analysis and design of constant-frequency peak-current-controlled high-power-factor boost rectifier with slope compensation,” in Proc. IEEE APEC ’96, pp. 807-813, 1996.
    [71] T. Takeshita, Y. Toyada and N. Matsui, “Harmonic suppression and DC voltage control of single-phase PFC converter,” in Proc. IEEE PESC ’00, vol. 2, pp. 571-576, 2000.

    [72] N .Bhiwapurkar, M. Rathi and N. Mohan, “Power factor correction circuit for faster dynamics zero steady state error using dual voltage controllers,” in Proc. IEEE IECON ’02, vol. 1,pp. 204-208, 2002.
    [73] J. Luo, M. K. Jeoh, and H. C. Huang, “A new continuous conduction mode PFC IC with average current mode control,” in Proc. PEDS ’03, vol. 2, pp.1110-1114, 2003.
    [74] M. O. Eissa, S. B. Leeb, G. C. Verghese and A. M. Stankovic, “A fast analog controller for a unity-power factor AC/DC converter,” in Proc. IEEE APEC ’94, vol. 2, pp. 551-555, 1994.
    [75] O. Lopez, L. G. de Vicuna and M. Castilla, “Sliding mode control design of a boost high-power-factor pre-regulator based on the quasi-steady-state approach,” in Proc. IEEE PESC ’01, vol. 2, pp. 932-935, 2001.
    [76] L. Rossetto, G. Spiazzi, P. Tenti, B. Fabiano and C. Licitra, “Fast-response high-quality rectifier with sliding mode control,” IEEE Trans. Power Electron., vol. 9, pp. 146-152, 1994.
    [77] G. Zhu, H. Wei, P. Kornetzky and I. Batarseh, “Small-signal modeling of a single-switch AC/DC power-factor-correction circuit,” IEEE Trans. Power Electron., vol. 14, pp. 1142-1148, 1999.
    [78] P. Mattavelli, G. Spiazzi and P. Tenti, “Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers,” IEEE Trans. Power Electron., vol. 20, pp. 140-147, 2005.
    [79] W. Zhang, G. Feng, Y.-F Liu and B. Wu, “DSP implementation of predictive control strategy for power factor correction (PFC),” in Proc. IEEE APEC ’04, vol. 1, pp. 67-73, 2004.
    [80] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkbeek, “Duty-ratio feedforward for digitally controlled boost PFC converters,” IEEE Trans. Ind. Electron., vol. 52, pp. 108-115, 2005.
    [81] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust compensation and current waveform controls,” IEEE Trans. Ind. Electron., vol. 19, pp. 560-566, 2004.

    [82] A. Kaletsanos, F. Xepapas, S. Xepapas and S. N. Manias, “Nonlinear control technique for three-phase boost AC/DC power converter,” in Proc. IEEE PESC ’03, vol. 3, pp. 1080-1085, 2003.

    F. Nonlinear behavior
    [83] M. Orabi and T. Ninomiya, “Nonlinear dynamics of power-factor-correction converter,” IEEE Trans. Ind. Electron., vol. 50, pp. 1116-1125, 2003.
    [84] C. K. Tse and M. Di Bernardo, “Complex behavior in switching power converters,” in Proc. IEEE, vol.90, pp. 768-781, 2002.
    [85] H. Ren, C. Jin, T. Ninomiya and, J. Chunfeng, “Novel developments in the study of the fast-and slow-scale instabilities of a DC-DC converters,” IEEE ISCAS ’05, PP. 2827-2830, 2005.
    [86] M. Orabi, T. Ninomiya and J. Chunfeng, “Novel developments in the study of nonlinear phenomena in power factor correction circuits,” in Proc. IEEE IECON ’02, vol. 1, pp. 209-215, 2002.
    [87] H. H. C. Lu, Y. Zhou and C. K. Tse, “Fast-scale instability in a PFC boost converter under average current-mode control,” Int. J. Circuit Theory Appl., vol. 31, pp. 611-624, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE