簡易檢索 / 詳目顯示

研究生: 雷子民
論文名稱: 利用重水微灌流氫磁振造影進行 大鼠大腦之隔室模型分析
Compartmental model analysis on water dynamics in rat brain by perfusion 1H MRI with D2O as contrast agent
指導教授: 王福年
口試委員: 黃騰毅
林發暄
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 39
中文關鍵詞: 氧化氘磁振造影對比劑微灌流模型腦血流速
外文關鍵詞: D2O, MRI contrast agent, perfusion model, cerebral blood flow
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化氘(重水)早期被視為一高通透性的對比劑並應用於微灌流磁振造影技術中。但是受限於氘磁振造影的靈敏度,氘影像無法提供足夠的信雜比。近期的研究利用收取氫原子訊號的方式來間接偵測由重水所衰減訊號的微灌流磁振造影。其優異的信雜比提供了高空間解析度的成像。我們希望能夠藉由此技術,更進一步的去分析重水於生物體內的局部分布情形並且利用數學模型去描述其特性。在本實驗中,我們試著利用單室與雙室數學模型來描述大鼠腦中重水微灌流的特性。並對於所計算出的動力學參數進行分析。從實驗結果我們發現雙室模型較能夠描述重水於大腦內為灌流的特性,但是較容易受雜訊影響。我們根據不同的重水流出速率可以將不同的組織進行分類。其中,我們將流出速度為中等且占據大部分體積的貢獻視為腦血流。跟其他文獻相比本實驗所算出的血流數值在合理範圍內,且具有良好的灰白質對比。其餘部分則是可能包含著重水均勻分散至體內或是腎臟代謝水分以及腦脊髓液循環等訊息。但因受限於時間解析度以及訊號偏移難以將這些資訊分離出。未來進行影像參數上的改善後,此技術將可應用於臨床血液流速分析以及腦神經病變的研究。


    In early perfusion MRI studies, D2O had been used as a high diffusible tracer. It was verified that D2O can be applied as an effective contrast agent. Due to the limitation of theoretical sensitivity on deuterium images, the signal to noise ratio (SNR) is too low to acquire distinctly anatomical details. In recent study, a new strategy for detecting D2O by monitoring the attenuation of 1H signal has been suggested. By using this new strategy, we further research the microcirculation of D2O and establish a kinetic model. In this study, one and two compartments models were proposed to depict the dynamics of D2O in rat brain. The kinetic parameters were derived from compartmental models by de-convolution. It is showed that the two compartments model could give a more accurate but less precise in the estimation of physiological parameters. Based on the efflux characteristic, brain tissue could be separated into three portions. The main portion of the derived efflux constant is referred as CBF, where the GM and WM can be differentiated successfully on the CBF map. The other portions may imply the process that D2O distributes into normal water or the secretion of cerebrospinal fluid. Improving the temporal resolution and avoiding the signal drift are essential work in following studies to recognize dynamics of D2O.

    摘要 I Abstract II CONTENTS III Chapter 1 1 Introduction 1 Chapter 2 4 Material and Methods 4 Animal experiment 4 Compartmental models 5 Data analysis 7 Chapter 3 9 Results 9 3.1 Arterial input function 9 3.2 Histogram of efflux constant 10 3.3 Simulation of convolution 12 3.4 Anatomical images 14 3.5 Flow map in different efflux rate 15 3.6 Cerebral blood flow comparing 23 3.7 Analysis of fitting curve in particular area 26 Chapter 4 30 Discussion 30 Chapter5 36 Conclusion 36 References 37

    1. Tofts, P.S., et al., Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging, 1999. 10(3): p. 223-32.
    2. Calamante, F., D.G. Gadian, and A. Connelly, Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke - Assumptions, limitations, and potential implications for clinical use. Stroke, 2002. 33(4): p. 1146-1151.
    3. Thomsen, H.S., Nephrogenic Systemic Fibrosis: History and Epidemiology. Radiologic Clinics of North America, 2009. 47(5): p. 827-+.
    4. Ackerman, J.J.H., et al., Deuterium Nuclear-Magnetic-Resonance Measurements of Blood-Flow and Tissue Perfusion Employing (H2o)-H-2 as a Freely Diffusible Tracer. Proceedings of the National Academy of Sciences of the United States of America, 1987. 84(12): p. 4099-4102.
    5. Muller, S. and J. Seelig, Invivo Nmr Imaging of Deuterium. Journal of Magnetic Resonance, 1987. 72(3): p. 456-466.
    6. Pfeuffer, J., et al., Water signal attenuation in diffusion-weighted 1H NMR experiments during cerebral ischemia: influence of intracellular restrictions, extracellular tortuosity, and exchange. Magn Reson Imaging, 1998. 16(9): p. 1023-32.
    7. Furuya, Y., et al., The measurement of blood flow parameters with deuterium stable isotope MR imaging. Ann Nucl Med, 1997. 11(4): p. 281-4.
    8. Wang, F.N., et al., Water signal attenuation by D2O infusion as a novel contrast mechanism for 1H perfusion MRI. NMR Biomed, 2013. 26(6): p. 692-8.
    9. Tofts, P.S., Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Jmri-Journal of Magnetic Resonance Imaging, 1997. 7(1): p. 91-101.
    10. Tofts, P.S., et al., Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: Standardized quantities and symbols. Journal of Magnetic Resonance Imaging, 1999. 10(3): p. 223-232.
    11. Bogin, L., et al., Parametric imaging of tumor perfusion using flow- and permeability-limited tracers. Journal of Magnetic Resonance Imaging, 2002. 16(3): p. 289-299.
    12. Bogin, L., et al., Parametric imaging of tumor perfusion with deuterium magnetic resonance imaging. Microvascular Research, 2002. 64(1): p. 104-115.
    13. Kim, S.G. and J.J.H. Ackerman, Multicompartment Analysis of Blood-Flow and Tissue Perfusion Employing D2o as a Freely Diffusible Tracer - a Novel Deuterium Nmr Technique Demonstrated Via Application with Murine Rif-1 Tumors. Magnetic Resonance in Medicine, 1988. 8(4): p. 410-426.
    14. Bulat, M., et al., Transventricular and transpial absorption of cerebrospinal fluid into cerebral microvessels. Coll Antropol, 2008. 32 Suppl 1: p. 43-50.
    15. Kety, S.S., Measurement of Regional Circulation by the Local Clearance of Radioactive Sodium. American Heart Journal, 1949. 38(3): p. 321-328.
    16. Kety, S.S., The Theory and Applications of the Exchange of Inert Gas at the Lungs and Tissues. Pharmacological Reviews, 1951. 3(1): p. 1-41.
    17. Tofts, P.S. and A.G. Kermode, Measurement of the Blood-Brain-Barrier Permeability and Leakage Space Using Dynamic Mr Imaging .1. Fundamental-Concepts. Magnetic Resonance in Medicine, 1991. 17(2): p. 357-367.
    18. Zhang, J. and S. Kim, Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from T1-weighted dynamic contrast enhanced MRI. Magn Reson Med, 2014. 72(2): p. 534-45.
    19. Buckley, D.L., Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T-1-weighted MRI. Magnetic Resonance in Medicine, 2002. 47(3): p. 601-606.
    20. Sourbron, S.P. and D.L. Buckley, On the Scope and Interpretation of the Tofts Models for DCE-MRI. Magnetic Resonance in Medicine, 2011. 66(3): p. 735-745.
    21. Magata, Y., et al., Development of injectable O-15 oxygen and estimation of rat OEF. Journal of Cerebral Blood Flow and Metabolism, 2003. 23(6): p. 671-676.
    22. Temma, T., et al., Estimation of oxygen metabolism in a rat model of permanent ischemia using positron emission tomography with injectable O-15-O-2. Journal of Cerebral Blood Flow and Metabolism, 2006. 26(12): p. 1577-1583.
    23. Kobayashi, M., et al., Development of an (H2O)-O-15 steady-state method combining a bolus and slow increasing injection with a multiprogramming syringe pump. Journal of Cerebral Blood Flow and Metabolism, 2011. 31(2): p. 527-534.
    24. van Osch, M.J., et al., Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med, 2001. 45(3): p. 477-85.
    25. van Osch, M.J., et al., Measuring the arterial input function with gradient echo sequences. Magn Reson Med, 2003. 49(6): p. 1067-76.
    26. Calamante, F., D.G. Gadian, and A. Connelly, Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition. Magnetic Resonance in Medicine, 2000. 44(3): p. 466-473.
    27. Ostergaard, L., et al., High resolution measurement of cerebral blood flow using intravascular tracer bolus passages .1. Mathematical approach and statistical analysis. Magnetic Resonance in Medicine, 1996. 36(5): p. 715-725.
    28. Calamante, F., P.J. Yim, and J.R. Cebral, Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage, 2003. 19(2): p. 341-353.
    29. Lewis, G.N., The Biology of Heavy Water. Science, 1934. 79(2042): p. 151-3.
    30. Barbour, H.G., The Basis of the Pharmacological Action of Heavy Water in Mammals. Yale J Biol Med, 1937. 9(6): p. 551-65.
    31. Kushner, D.J., A. Baker, and T.G. Dunstall, Pharmacological uses and perspectives of heavy water and deuterated compounds. Can J Physiol Pharmacol, 1999. 77(2): p. 79-88.
    32. Brown, P.D., et al., Molecular mechanisms of cerebrospinal fluid production. Neuroscience, 2004. 129(4): p. 957-70.
    33. Pollay, M., et al., Effect of mannitol and furosemide on blood-brain osmotic gradient and intracranial pressure. J Neurosurg, 1983. 59(6): p. 945-50.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE