研究生: |
江弘棋 Hung Chi Chiang |
---|---|
論文名稱: |
應用二維數值模擬以改善電漿顯示器之發光效率 Application of Two dimensional numerical simulation for luminous efficiency improvement in plasma display panel |
指導教授: |
陳金順
G. S. Chen 柳克強 K. C. Leou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 電漿顯示器 、模擬 、氣體放電 、壁電荷 、流體模型 |
外文關鍵詞: | plasma display panel, simulation, gas discharge, wall charge, fluid model |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為使用二維交流型電漿顯示器之數值模擬來改善電漿顯示器的發光效率,影響發光效率的因子有驅動電壓波形、混合氣體成份、電極結構、cell結構等參數,而本論文的探討以電極結構與氣體成份為主,而模擬所使用的物理模型為流體模型(fluid model),並考慮電子能量方程式,以精確計算空間中的電子平均能量,在本文中比較了傳統式電極以及一些特殊電極對電漿顯示器發光效率的影響,藉由增加電漿的放電路徑來產生較多的氙激發態,並且在兩維持電極間的輔助電極上加維持電壓方波以感應出正陽光柱放電(positive column discharge),因此利用在陽極區域的高放電效率來有效提升電漿顯示器的發光效率,並考慮紫外光的放射情形計算發光效率,根據我們設計的電極可以使放電效率達26%,而改變維持電壓頻率,當頻率增加時會有較低的電子溫度,因此枮激發效率可提升,但是若頻率過高而產升的提早放電將使電子密度下降,所以電子加熱效率會降低,在混合氣體方面,已建立六種不同的氣體比例,為Ne/Xe4%、Ne/Xe5%、Ne/Xe8%、Ne/Xe10%、Ne/Xe12%、Ne/Xe15%,研究發現在低氙氣成分時紫外光主要是147nm為主,而在高氙氣下紫外光主要是由Xe2*(3Σu+)所產生(173nm),最後並模擬友達的面板參數,得到與實驗上相近的結果。
The luminous efficiency of AC plasma display panels is relatively low. In this thesis, we design new electrode structure to improve luminous efficiency. The UV efficiency can be increased by a factor of 1.3 in comparison with the conventional model.
參考文獻
[1] F. Gray, J. W. Horton, R. C. Mathes, “The Porduction and Utilization of Television Signal,” Bell Sys. Tech. J., 6, 560(1927).
[2] Lawrence E. Tannas, Jr., “Flat Panel Displays And CRTs,” New York:Van Nostrand Reinhold, p. 338.(1985).
[3] D. L. Bitzer, and H. G. Slottow,“The Plasma Display Panel-A Digitally Addressable Display with Inherent Memory,” AFIPS Conf. Proc., 29, 541(1966).
[4] T. Shinoda, M. Wakitani, T. Nanto, T. Kurai, N. Awaji, M. Suzuki, ”Improvement of Luminance and Luminous Efficiency of Surface-Discharge Color ac PDP,” SID ’91 digest, p. 724(1991).
[5] J. Meunier, P. Belenguer, and J. P. Boeuf, "Numerical model of an ac plasma display panel cell in neon-xenon mixtures", J Appl Phys. 78, 731 (1995)
[6] C. Punset, J.P. Boeuf and L.C. Pitchford, "Two-dimensional simulation of an alternating current matrix plasma display cell: Cross-talk and other geometric effects", J Appl Phys. 83,1884 (1998).
[7] J.P. Boeuf, Th. Callegari ,C. Punset, and R. Ganter, “Modeling as a Tool for plasma display cell optimization,” Asia Display’98, p.209 (1998)
[8] Jeong Hyun Seo, Woo Joon Chung, Cha Keun Yoon, “Two-dimension Modeling of a surface type Alternating current plasma display panel cell: discharge dynamics and address voltage effects ,”IEEE Trans. Plasma Sci. 29, 824 (2001)
[9] H. C.Kim, M. S. Hur, S. S. Yang, S. W. Shin, and J. K Lee, “Three-dimensional fluid simulation of a plasma display panel cell,” J Appl. Phys. 91, 9513 (2002)
[10] J. H. Choi, Y. Jung, C.G. Ryu, S. B. Kim and E.H. Choi,”Space charge effect for sustaining discharge in coplanar AC PDP,” IDW ’02, p.873 (2002)
[11] Sean J. Yoon, Insook Lee, and K. Y. Choi,”Three-dimensional simulation of He/Ne/Xe filled coplanar AC-PDPs,” IDW ’02, p.833 (2002)
[12] S. J. Lee, J.K. Lee, and H. J. Hwang, “Improvement of luminance and luminous efficiency by the optimized gas in AC PDP,” IDW ’02, p.805 (2002)
[13] C. Punset, S. Cany and J.-P. Boeuf, “Addressing and sustaining in AC coplanar plasma display panels,” J. Appl. Phys. 86, 124 (1999)
[14] H. C. Kim, S. S. Yang, and J. K. Lee, “Three-dimensional fluid simulation of an AC-PDP cell,” IEEE Trans. Plasma Sci. 30, p.188 (2002)
[15] S. Rauf and M. J. Kushner,“ Dynamics of a coplanar-electrode plasma display panel cell, Ⅰ.Basic operation ” J. Appl. Phys. 85, 3460 (1999)
[16] S. Rauf and M. J. Kushner,“ Dynamics of a coplanar-electrode plasma display panel cell,Ⅱ. Cell optimization,” J. Appl. Phys. 85, 3460 (1999)
[17] Heui Seob Jeong, Yukio Murakami, Masahiko Seki, and Hiroshi Murakami,”Discharge characteristics with respect to width of address electrode using three-dimensional analysis ,”IEEE Trans.Plasma Sci. 29, 559 Jun. (2001).
[18] Heui Seob Jeong, Buhm-Jae Shin, and Ki-Woong Whang,”Two-dimensional multifluid modeling of the He-Xe discharge in an AC plasma display panel,”IEEE Trans. Plasma Sci., 27,p.171, (1999).
[19] Hagelaar, Gerardus Johannes Maria,”Modeling of microdischarges for display technology”, Ph.D. thesis, (2000)
[20] G. Veronis and U. S. Inan, “Simulation studies of the coplanar electrode and other plasma display panel cell designs,” J. Appl, Phys., 91, 9502 (2002)
[21] G. Veronis and U. S. Inana, “Cell geometry designs for efficient plasma display panels,” J. Appl. Phys., 92, 9 (2002).
[22] Woo Joon Chung, Jeong Hyun Seo, and Ki-Woong Whang, “Analysis of the address and sustain discharge in an AC PDP cell using three-dimensional simulation,”IEEE Trans. Plasma Sci , 30, April (2002)
[23] J. P. Boeuf, “Plasma display panel: Physics, recent developments and key issues,” J. Appl. Phys. 36 R53 (2003)
[24] Sung Soo Yang, Hyun Chul Kim, Sang Woo Ko, and Jae Koo Lee, “Application of Two-Dimensional Numerical Simulation for luminous efficiency improvement in plasma display panel cell ,”IEEE Trans. Plasma Sci. ,vol. 31 (2003)
[25] J.P. Boeuf, C, Punset,A. Hirech and H.Doyeux, “Physics and modeling of plasma display panels”, J. Appl. Phys. 4,1997
[25] BOLSIG, "Boltzmann solver for the SIGLO-SERIES 1.0", CPA Toulouse & Kinema Software (1996)
[26] Siegfried Selberherr, "Analysis and Simulation of Semiconductor Devices",P156∼P175,Springer-Verlag Wien New York.
[27] Faires.Burden, "Numerical Methods",second edition.
[28] G. S. Chen and D. Y. Yang, "Comparison of preconditioned generalized conjugate gradient methods to two-dimensional neutron and photon transport equation", Ann. Nucl. Energy, 25, 97-115 (1998)
[29] 12.Y. Ikeda, J. P. Verboncoeur, P. J. Christenson, and C. K. Birdsall, "Global modeling of a dielectric barrier discharge in Ne-Xe mixtures for an alternating current plasma display panel", J. Appl. Phys., 86, 2431 (1999)
[30] MATLAB程式設計與應用,張智星
[31] 國立清華大學工程與系統科學所碩士論文,鄭凱儒
[32] 國立清華大學工程與系統科學所碩士論文,陳龍志
[33] Gerjan Hagelaar, Daiyu Hayashi “Discharge efficiency in high Xe content plasma display panels”, J. Appl. Phys., 95,1656 (2004)
[34] D. Piscitelli, L.C. Pitchford, “Ion mobilities in Xe/Ne and other rare gas mixtures”, Phys. Rev. E 68, (2003)
[35] D. J. Eckstrom, H. H. Nakano, “Characteristics of electron beam excited Xe2* at low pressures as a vacuum ultraviolet source”, J. Appl. Phys. 64,1679 (1988)
[36] Woo Joon Chung, Jae Jun Kim, Hyun Sook Bae, Jeong Hyun Seo, and Ki-Woong Whang, “Mechanism of high luminous efficient discharges with high Xe-content in AC PDP”, IEEE Trans. Plasma Sci., 31, 1038, (2003)
[37] Hae June Lee, Hyun Chul Kim, Sung Soo Yang, and Jae Koo Lee, “Two-dimensional self-consistent radiation transport model for plasma display panels.” ,Physics Plasmas, 9, No. 6, (2002)
[38] Woo Joon Chung, Jeong Hyun Seo, Dong-Cheol Jeong, and Ki-Woong Whang, “Three-Dimensional Modeling of a surface type alternating current plasma display panel cell: the effect of cell geometry on the discharge characteristics”, IEEE Trans. Plasma sci., 31, NO. 5, (2003)
[39] Volker van Elsbergen, Peter K. Bachmann, and Thomas Juestel, “ Ion-Induced Secondary Electron Emission: A Comparative Study”, SID’00, 2000, pp. 220
[40] C.H. Shon, J. K. Lee, H. C. Kim and S. W. Shin, “Striation Phenomenon of Plasma Display Panel Cell and Its Application to Efficiency Improvement”, SID’01, 2001
[41] J. O. Hischfelder, C. F. Curtiss, and R. B. Bird, “Molecular theory of gases and liquids,” John Wiley & Sons, Inc. (1954).