簡易檢索 / 詳目顯示

研究生: 賴嘉宏
Lai, Chia-Hung
論文名稱: NiO與CuO之軟X光共振非彈性散射研究
Measurements of Resonant Inelastic Soft X-ray Scattering on NiO and CuO
指導教授: 黃迪靖
Huang, Di-Jing
口試委員: 牟中瑜
林秀豪
彭維鋒
崔古鼎
杜昭宏
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 123
中文關鍵詞: 共振非彈性X光散射軟X光
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 強關聯電子系統的電子結構與磁性特性在凝態物理領域裡扮演著相當重要的課題,而共振非彈性X光散射實驗技術是研究電子結構與磁特性相當重要的技術之一。在軟X光能量範圍裡面,共振非彈性X光散射實驗技術可測量系統裡電子與電子之間交互作用所產生的局部激發(local excitation) 和集體激發(collective excitation)的訊息,無法由於一般的X光吸收光譜(X-ray absorption spectroscopy)與光電子光譜技術(X-ray photoemission pectroscopy)所獲得的。然而共振非彈性X光散射的量測技術往往要求相當高的入射光子通量。為了提高該技術的量測效率,我們發展全新的概念應用在共振非彈性X光散射量測技術上面,並且在建造一條具有高量測效率以及高解析力的軟X光非彈性散射光束線。藉由能量補償原理(energy compensation principle)確實提高該條光束線的量測效率,此外該光束線採用可彎曲式光柵(bendable grating)來修正散焦像差(defocus aberration)和慧形像差(coma aberration)使得該系統具有高解析能力特性。入射光能量範圍從700 eV至933 eV時,該系統的整體能量解析力可以高達10,000。本論文呈現一條全新建造的“高效率、高解析力之共振軟X光非彈性散射光束線”的試車成果,以及探討3𝑑過度金屬氧化物NiO與CuO具有動量解析的共振非彈性散射能譜,同時也證實了能量補償原理與可彎曲式光柵的設計可應用於強關聯電子系統的電子結構之研究。


    Resonant inelastic X-ray scattering (RIXS) is a powerful technique for studying electronic structure. In the soft X-ray regime, RIXS provides essential information about local and collective excitations which can't be obtained from other X-ray spectroscopic methods, such as X-ray absorption spectroscopy (XAS) and photoemission spectroscopy. However, a RIXS measurment requires high photon flux. In order to increase the efficiency of RIXS measurement, we developed a highly efficient beamline and spectrometer of inelastic soft X-ray scattering at high resolution. The design and construction of the beamline and spectrometer was based on the energy compensation principle of grating dispersion. We used two bendable gratings to achieve a good energy resolution by eliminating the defocus and comma aberrations. The total resolving power for incident photon energy covering from the Fe L3-edge to the Cu L3-edge was between 7500 and 10,000. The design of this monochromator-spectrometer system also greatly enhances the efficiency of measurement of inelastic soft X-rays scattering. In this dissertation, we present commissioning results of this new RIXS beamline and its capability of measuring momentum-resolved RIXS of NiO and CuO.

    1 Introduction 8 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Strongly correlated system . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Viewpoints of independent electron ligand eld theory . . . 9 1.2.2 Molecular orbital approach . . . . . . . . . . . . . . . . . . . 12 1.2.3 Viewpoints of multiplet ligand eld theory . . . . . . . . . . 14 1.2.4 Viewpoints of band theory . . . . . . . . . . . . . . . . . . . 15 1.3 Elementary excitations of strongly correlated systems . . . . . . . . 16 1.3.1 Charge-transfer excitations . . . . . . . . . . . . . . . . . . . 16 1.3.2 Orbital excitations . . . . . . . . . . . . . . . . . . . . . . . 18 1.3.3 Magnetic excitations . . . . . . . . . . . . . . . . . . . . . . 18 1.4 Measurements of low-energy excitations . . . . . . . . . . . . . . . . 19 2 Inelastic soft X-ray scattering spectroscopy 22 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2 Theory of X-ray scattering . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 X-ray absorption spectroscopy . . . . . . . . . . . . . . . . . 23 2.2.2 Principle of X-ray scattering . . . . . . . . . . . . . . . . . . 26 2.2.3 Resonant X-ray scattering . . . . . . . . . . . . . . . . . . . 29 3 High-eciency beamline and spectrometer for inelastic soft X-ray scattering at high resolution 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Conventional inelastic soft X-ray scattering setups . . . . . . . . . . 38 3.3 Design of the AGM-AGS beamline and spectrometer . . . . . . . . 39 3.3.1 Active monochromator and spectrometer . . . . . . . . . . . 39 3.3.2 The energy-compensation principle . . . . . . . . . . . . . . 41 3.3.3 Mechanical design and optics layout . . . . . . . . . . . . . . 43 3.4 Implementing high-resolution RIXS . . . . . . . . . . . . . . . . . . 45 3.4.1 Construction of the AGM-AGS system . . . . . . . . . . . . 45 3.4.2 Standard operation procedures of AGM-AGS system . . . . 61 3.5 Beamline operation system . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Standard operation procedures of acquiring data . . . . . . . 84 3.6 Commissioning results of energy compensation principle . . . . . . . 90 4 Soft X-ray RIXS of NiO and CuO 93 4.1 NiO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.1.2 L3-edge RIXS spectra of NiO . . . . . . . . . . . . . . . . . 97 4.1.3 Charge-transfer feature of NiO . . . . . . . . . . . . . . . . . 103 4.2 Cupric Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Polarization dependent RIXS spectra of CuO at Cu L3-edge 109 4.2.3 Temperature dependent RIXS spectra of CuO . . . . . . . . 112 5 Magnetic and orbital ordering of KCuF3 studied by resonant X- ray scattering 117 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.3 Experimental results and discussions . . . . . . . . . . . . . . . . . 122 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6 Summary 130

    [1] J. Stohr and H. Siegmann, Magnetism, Springer, 2006.
    [2] H.-Y. Huang et al., Physical Review B 84, 235125 (2011).
    [3] Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan 9, 753
    (1954).
    [4] Y. Tanabe and S. Sugano, Journal of the Physical Society of Japan 9, 766
    (1954).
    [5] F. de Groot, Chemical reviews 101, 1779 (2001).
    [6] N. F. Mott, Proceedings of the Physical Society 47, 571 (1935).
    [7] J. C. Slater, Phys. Rev. 49, 537 (1936).
    [8] J. C. Slater, Phys. Rev. 49, 931 (1936).
    [9] E. C. Stoner, Proceedings of the Physical Society. Section A 165, 372 (1938).
    [10] E. C. Stoner, Proceedings of the Physical Society. Section A 154, 656 (1936).
    [11] N. F. Mott, Proceedings of the Physical Society. Section A 62, 416 (1949).
    [12] J. Hubbard, Proceedings of the Physical Society. Section A 227, 237 (1964).
    [13] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
    [14] L. J. P. Ament, M. van Veenendaal, and J. van den Brink, EPL (Europhysics
    Letters) 95, 27008 (2011).
    [15] H. Bethe, Annals of Physics 3, 190 (1958).
    [16] S. Maekawa et al., Physics of Transition Metal Oxides, Springer, 2004.
    [17] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
    [18] E. Saitoh et al., Nature 410, 180 (2001).
    [19] M. Gruninger et al., Nature 418, 180 (2002).
    [20] L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, J. P. Hill, and J. van den
    Brink, Rev. Mod. Phys. 83, 705 (2011).
    [21] H.-Y. Huang and D.-j. Huang, Electronic excitations of NiO and CoO Re-
    vealed by Resonant Inelastic Soft X-ray Scattering, National Tsing Hua University,
    2009.
    [22] D. C. Koningsberger and R. e. Prins, X-Ray Absorption Spectroscopy: Princi-
    ples, Applications and Techniques of EXAFS, SEXAFS and XANES, Wiley,
    New York, 1988.
    [23] J. Yano, A. V. K. Yachandra, X.-r. A. Exafs, and A. X. A. X-ray, page 241
    (2009).
    [24] J. Sakurai, Modern Quantum Mechanics, Revised Edition, Pearson Eduction
    Taiwan Ltd, 5F, No.147, Chung-Ching South Road, Sec.1, Taipei, 100,
    Taiwan, R.O.C., 1994.
    [25] J. D. Jackson, Classical Electrodynamics, John Wiley and Sons, 111 River
    Streer, Hoboken, NJ 07030, 1999.
    [26] D. M. Jens Als-Nielsen, Elements of Modern X-ray Physics, John Wiley and
    Sons Ltd, 111 River Streer, Hoboken, NJ 07030, 2001.
    [27] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett.
    61, 1245 (1988).
    [28] M. Blume, J. Appl. Phys. 57, 3615 (1985).
    [29] H. S. Fung et al., AIP CONF. PROC. 705, 655 (2004).
    [30] A. Kotani and S. Shin, Rev. Mod. Phys. 73, 203 (2001).
    [31] T. Hatsui, H. Setoyama, E. Shigemasa, and N. Kosugi, J. Electron Spectrosc.
    Relat. Phenom. 144, 1059 (2005).
    [32] G. Ghiringhelli et al., Rev. Sci. Instrum. 77, 113108 (2006).
    [33] T. Tokushima, Y. Harada, H. Ohashi, Y. Senba, and S. Shin, Rev. Sci.
    Instrum. 77, 063107 (2006).
    [34] M. Agaker et al., Nucl. Instrum. Methods Phys. Res. A 601, 213 (2009).
    [35] V. N. Strocov et al., J. Synchrotron. Radiat. 17, 631 (2010).
    [36] Y. Harada et al., Rev. Sci. Instrum. 83, 013116 (2012).
    [37] G. Ghiringhelli, L. Braicovich, T. Schmitt, and V. Strocov, Synchrotron
    Radiation News 25, 16 (2012).
    [38] T. Schmitt, V. N. Strocov, K.-J. Zhou, J. Schlappa, and C. Monney., 2013.
    [39] Ichikawa et al., J. Electron Spectr. Rel. Phenom. 78, 183 (1996).
    [40] T. Schmitt et al., Journal of Electron Spectroscopy and Related Phenomena
    188, 38 (2013), <ce:title>Progress in Resonant Inelastic X-Ray Scattering</
    ce:title>.
    [41] J. Schlappa et al., Nature 485, 82 (2012).
    [42] P. H. Green, Proceedings of workshop on soft x-ray science in the next
    millennium: The future of photon-in/photon-out experiments, 1999.
    [43] C. Chen, Nuclear Instruments and Methods in Physics Research Section A:
    Accelerators, Spectrometers, Detectors and Associated Equipment 256, 595
    (1987).
    [44] C. T. Chen and F. Sette, Review of Scienti c Instruments 60 (1989).
    [45] S.-C. Chung et al., Journal of Synchrotron Radiation 5, 551 (1998).
    [46] S.-J. Chen et al., Nucl. Instrum. Methods A 467-468, 298 (2001).
    [47] Z.-X. Shen et al., Phys. Rev. B 44, 3604 (1991).
    [48] L. F. Mattheiss, Phys. Rev. B 5, 290 (1972).
    [49] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
    [50] A. Svane and O. Gunnarsson, Phys. Rev. Lett. 65, 1148 (1990).
    [51] J. Kunes, V. I. Anisimov, S. L. Skornyakov, A. V. Lukoyanov, and D. Vollhardt,
    Phys. Rev. Lett. 99, 156404 (2007).
    [52] G. Ghiringhelli et al., J. Phys. Condens. Matter 17, 5397 (2005).
    [53] F. U. Hillebrecht et al., Phys. Rev. Lett. 86, 3419 (2001).
    [54] J. Ferguson and H. J. Guggenheim, The Journal of Chemical Physics 44
    (1966).
    [55] M. Fiebig et al., Phys. Rev. Lett. 87, 137202 (2001).
    [56] F. M. F. de Groot, P. Kuiper, and G. A. Sawatzky, Phys. Rev. B 57, 14584
    (1998).
    [57] S. G. Chiuzbaian et al., Phys. Rev. Lett. 95, 197402 (2005).
    [58] G. Ghiringhelli et al., Phy. Rev. Lett. 102, 027401 (2009).
    [59] M. van Veenendaal, X. Liu, M. H. Carpenter, and S. P. Cramer, Phys. Rev.
    B 83, 045101 (2011).
    [60] H. Ishii et al., Journal of the Physical Society of Japan 70, 1813 (2001).
    [61] M. Magnuson, S. M. Butorin, A. Agui, and J. Nordgren, Journal of Physics:
    Condensed Matter 14, 3669 (2002).
    [62] M. Matsubara, T. Uozumi, A. Kotani, and J.-C. Parlebas, J. Phys. Soc.
    Japan 74, 2052 (2005).
    [63] F. M. F. de Groot, P. Kuiper, and G. A. Sawatzky, Phy. Rev. B 57, 14584
    (1998).
    [64] L. Braicovich et al., Phys. Rev. B 55, R15989 (1997).
    [65] H. Ishii et al., J. Phys. Soc. Japan 70, 1813 (2001).
    [66] M. Magnuson, S. M. Butorin, A. Agui, and J. Nordgren, J. Phys. Condens.
    Matter 14, 3669 (2002).
    [67] L. Braicovich et al., Phys. Rev. Lett. 102, 167401 (2009).
    [68] L. Braicovich et al., Phys. Rev. Lett. 104, 077002 (2010).
    [69] L. J. P. Ament, G. Ghiringhelli, M. M. Sala, L. Braicovich, and J. van den
    Brink, Phys. Rev. Lett. 103, 117003 (2009).
    [70] G. Ghiringhelli and L. Braicovich, Journal of Electron Spectroscopy and
    Related Phenomena 188, 26 (2013).
    [71] M. P. M. Dean et al., Nature materials 11, 850 (2012).
    [72] S. Wakimoto et al., Phys. Rev. Lett. 102, 157001 (2009).
    [73] G. Ghiringhelli et al., Science (New York, N.Y.) 337, 821 (2012).
    [74] T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, and a. P. Ramirez, Nature
    materials 7, 291 (2008).
    [75] W. B. Wu et al., Physical Review B 81, 172409 (2010).
    [76] B. Columbia, 39, 4343 (1989).
    [77] S. L. Johnson et al., Physical Review Letters 108, 037203 (2012).
    [78] T. S. H. ~A, T. M. Atsumoto, A. G. Oto, K. Y. Oshimura, and K. K. Osuge,
    72, 2165 (2003).
    [79] J. van den Brink and D. I. Khomskii, Journal of Physics: Condensed Matter
    20, 434217 (2008).
    [80] G. Ghiringhelli et al., Physical Review Letters 92, 117406 (2004).
    [81] W. B. Wu et al., Physical Review B 88, 205129 (2013).
    [82] G. Ghiringhelli et al., The European Physical Journal Special Topics 169,
    199 (2009).
    [83] M. IKEBE and M. DATE, electron spin rosonance in one dimensional antiferromagnet
    KCuF3, 1971.
    [84] R. Caciu o et al., Physical Review B 65, 174425 (2002).
    [85] L. Paolasini, R. Caciu o, a. Sollier, P. Ghigna, and M. Altarelli, Physical
    Review Letters 88, 106403 (2002).
    [86] M. Takahashi, M. Usuda, and J.-i. Igarashi, Physical Review B 67, 064425
    (2003).
    [87] K. Ishii et al., Physical Review B 83, 241101 (2011).
    [88] J. Kanamori, Journal of Applied Physics 31, S14 (1960).
    [89] D. I. Khomskii, 37, 725 (1974).
    [90] M. T. Hutchings, E. J. Samuelsen, and G. Shirane, 1969 M .T. Hutchings
    PhysRev.188.919 Neutron-Di raction Determination of the Antiferromagnetic
    Structure of KCuF3.PDF, 1969.
    [91] N. Binggeli and M. Altarelli, Physical Review B 70, 085117 (2004).
    [92] M. Blume and D. Gibbs, 37 (1988).
    [93] T. Bruckel et al., Acta Crystallographica Section A Foundations of Crystallography
    52, 427 (1996).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE