研究生: |
陳映蓁 Chen, Ying-Jen |
---|---|
論文名稱: |
探討 PGRMC1在子宮頸癌細胞生理上扮演的角色 The role of PGRMC1 on cell physiology in cervical cancer |
指導教授: |
詹鴻霖
Chan, Hong-Lin |
口試委員: |
王浩文
Wang, Hao-Ven 周秀專 Chou, Hsiu-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 子宮頸癌 、細胞生理 、PGRMC1 |
外文關鍵詞: | Cervical, PGRMC1, physiology |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在2018年世界衛生組織的統計中,子宮頸癌的好發率位居全球第四位。而在台灣衛福部2017年的統計中,子宮頸癌也位居女性十大癌症死因之中第七位。雖然近幾年因為子宮頸抹片檢測的普及使患者能提早診斷與接受治療,以及子宮頸癌疫苗的廣泛施打有效預防人類乳突病毒的感染,使子宮頸癌的發生率和死亡率逐年降低。然而,在許多開發中國家因為資源的匱乏而缺乏完善的檢測制度,造成子宮頸癌治療與診斷的延誤。當患者被診斷為後期或轉移型的子宮頸癌時,其五年存活率將大福下降且伴隨著不佳的預後。因此,探討子宮頸癌轉移的相關機制以及尋找有效的治療標的是非常重要的議題。
在本實驗中,藉由二維差異電泳和基質輔助雷射脫附游離飛行時間質譜儀分析兩株有著相同基因背景但卻具有不同轉移能力的子宮頸癌細胞株HeLa和高轉移性的HeLa-I5之間蛋白質表現的差異。在68個表現差異的蛋白質中,挑選其中一個在HeLa-I5細胞大量表現的蛋白Progesterone receptor membrane component 1 (PGRMC1) 並針對此蛋白進行更深入的探討。利用核糖核酸干技術使PGRMC1基因表現沈默,發現此蛋白的表現會影響癌細胞的移動與增生能力。此外,也利用CaSki和ME-180兩株子宮頸癌細胞株進行更進一步驗證,皆觀察到相似的結果。期待本實驗透過蛋白質體學的分析能夠提供子宮頸癌轉移相關的診斷標記與具有潛力的治療標的。
Cervical cancer is the fourth most frequently occurring cancer among females around the world in 2018 and it is also the tenth leading cause of death in cancer in Taiwan in 2017. Although the morbidity rate and mortality rate of cervical cancer are declined due to the widespread applications of Pap smear tests and vaccination. However, the morbidity and the mortality rates of cervical cancer remain high in some developing countries because of the lack of well-organized cervical cancer screening programs to detect cervical cancer at early stage which results in delayed treatment and the lack of HPV vaccination among female population also cause greater cervical cancer prevalence. Once patients were diagnosed with metastatic cervical cancer, it usually came with poor prognosis. As a result, it is critical to investigate the mechanism of cervical cancer metastasis and discover therapeutic targets for effective treatment.
In this study, we performed 2D-DIGE and MALDI-TOF/TOF MS to analyze the differentially expressed proteins in HeLa and invasive HeLa-I5 cells. According to our proteomic results, there were 68 differentially expressed proteins between the HeLa and HeLa-I5 cells. One of these differentially expressed proteins called Progesterone receptor membrane component 1 (PGRMC1) was selected as a candidate for further studies. We used small interfering RNA (siRNA) to knockdown PGRMC1 expression in cervical cancer cells, finding that PGRMC1 was correlated with cell migration and progression. A similar phenomenon was also observed in CaSki and ME-180 cells. Except to identify diagnostic markers correlated with cervical cancer metastasis and to discover therapeutic targets for the treatment of cervical cancer via proteomic analysis.
1. Cervical Cancer Treatment (PDQ(R)): Health Professional Version, in PDQ Cancer Information Summaries. 2002: Bethesda (MD).
2. Wu, M., et al., Automatic classification of cervical cancer from cytological images by using convolutional neural network. Biosci Rep, 2018. 38(6).
3. Rabelo-Santos, S.H., et al., Strong SOD2 expression and HPV-16/18 positivity are independent events in cervical cancer. Oncotarget, 2018. 9(31): p. 21630-21640.
4. Schiffman, M., et al., Human papillomavirus and cervical cancer. Lancet, 2007. 370(9590): p. 890-907.
5. Yuanyue, L., et al., Cervical Cancer, Human Papillomavirus Infection, and Vaccine-Related Knowledge: Awareness in Chinese Women. Cancer Control, 2018. 25(1): p. 1073274818799306.
6. Jemal, A., et al., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): p. 69-90.
7. Jia, Y., et al., SMAGP a novel biomarker of cervical cancer development and progression. Onco Targets Ther, 2018. 11: p. 6925-6935.
8. Chaffer, C.L. and R.A. Weinberg, A perspective on cancer cell metastasis. Science, 2011. 331(6024): p. 1559-64.
9. Steeg, P.S., Targeting metastasis. Nat Rev Cancer, 2016. 16(4): p. 201-18.
10. Midde, K., et al., Single-Cell Imaging of Metastatic Potential of Cancer Cells. iScience, 2018. 10: p. 53-65.
11. Heerboth, S., et al., EMT and tumor metastasis. Clin Transl Med, 2015. 4: p. 6.
12. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
13. Iser, I.C., G. Lenz, and M.R. Wink, EMT-like process in glioblastomas and reactive astrocytes. Neurochem Int, 2018.
14. Cheng, T., et al., XPNPEP2 is overexpressed in cervical cancer and promotes cervical cancer metastasis. Tumour Biol, 2017. 39(7): p. 1010428317717122.
15. Fetcko, K., et al., Cervical cancer metastasis to the brain: A case report and review of literature. Surg Neurol Int, 2017. 8: p. 181.
16. Li, H., X. Wu, and X. Cheng, Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol, 2016. 27(4): p. e43.
17. Cahill, M.A., Progesterone receptor membrane component 1: an integrative review. J Steroid Biochem Mol Biol, 2007. 105(1-5): p. 16-36.
18. Rohe, H.J., et al., PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol Ther, 2009. 121(1): p. 14-9.
19. Ahmed, I.S., et al., Progesterone receptor membrane component 1 (Pgrmc1): a heme-1 domain protein that promotes tumorigenesis and is inhibited by a small molecule. J Pharmacol Exp Ther, 2010. 333(2): p. 564-73.
20. Lin, S.T., et al., PGRMC1 contributes to doxorubicin-induced chemoresistance in MES-SA uterine sarcoma. Cell Mol Life Sci, 2015. 72(12): p. 2395-409.
21. Cahill, M.A., et al., The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta, 2016. 1866(2): p. 339-349.
22. Mir, S.U., et al., Elevated progesterone receptor membrane component 1/sigma-2 receptor levels in lung tumors and plasma from lung cancer patients. Int J Cancer, 2012. 131(2): p. E1-9.
23. Hampton, K.K., et al., PGRMC1 Elevation in Multiple Cancers and Essential Role in Stem Cell Survival. Adv Lung Cancer (Irvine), 2015. 4(3): p. 37-51.
24. Kabe, Y., et al., Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun, 2016. 7: p. 11030.
25. Willibald, M., et al., Progesterone receptor membrane component 1 is phosphorylated upon progestin treatment in breast cancer cells. Oncotarget, 2017. 8(42): p. 72480-72493.
26. Cahill, M.A., et al., PGRMC1 regulation by phosphorylation: potential new insights in controlling biological activity. Oncotarget, 2016. 7(32): p. 50822-50827.
27. Neubauer, H., et al., Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res, 2008. 10(5): p. R85.
28. Marshall, J., Transwell((R)) invasion assays. Methods Mol Biol, 2011. 769: p. 97-110.
29. Chang, B., et al., Overexpression of the recently identified oncogene REDD1 correlates with tumor progression and is an independent unfavorable prognostic factor for ovarian carcinoma. Diagn Pathol, 2018. 13(1): p. 87.
30. Hu, R., et al., SKA3 promotes cell proliferation and migration in cervical cancer by activating the PI3K/Akt signaling pathway. Cancer Cell Int, 2018. 18: p. 183.
31. Cetin, Y. and L.B. Bullerman, Evaluation of reduced toxicity of zearalenone by extrusion processing as measured by the MTT cell proliferation assay. J Agric Food Chem, 2005. 53(16): p. 6558-63.
32. Dai, B., et al., HMQ-T-F5 (1-(4-(2-aminoquinazolin-7-yl)phenyl)-3-(2bromo5- (trifluoromethoxy)phenyl) thiourea) suppress proliferation and migration of human cervical HeLa cells via inhibiting Wnt/beta-catenin signaling pathway. Phytomedicine, 2018. 51: p. 48-57.
33. Schaeffer, D.F., et al., Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC Cancer, 2010. 10: p. 59.
34. Kobel, M., et al., Epithelial hyaluronic acid and CD44v6 are mutually involved in invasion of colorectal adenocarcinomas and linked to patient prognosis. Virchows Arch, 2004. 445(5): p. 456-64.
35. Dhar, D.K., et al., Downregulation of KiSS-1 expression is responsible for tumor invasion and worse prognosis in gastric carcinoma. Int J Cancer, 2004. 111(6): p. 868-72.
36. Song, C., et al., Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem, 2013. 288(39): p. 28021-33.
37. Wei, W.F., et al., MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis, 2017. 8(12): p. 3220.
38. Kabe, Y., H. Handa, and M. Suematsu, Function and structural regulation of the carbon monoxide (CO)-responsive membrane protein PGRMC1. J Clin Biochem Nutr, 2018. 63(1): p. 12-17.
39. Wu, X.J., P. Thomas, and Y. Zhu, Pgrmc1 Knockout Impairs Oocyte Maturation in Zebrafish. Front Endocrinol (Lausanne), 2018. 9: p. 560.
40. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
41. Jie, X.X., X.Y. Zhang, and C.J. Xu, Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical applications. Oncotarget, 2017. 8(46): p. 81558-81571.
42. Li, Z., et al., SIRT6 drives epithelial-to-mesenchymal transition and metastasis in non-small cell lung cancer via snail-dependent transrepression of KLF4. J Exp Clin Cancer Res, 2018. 37(1): p. 323.
43. Tran, H.D., et al., Transient SNAIL1 expression is necessary for metastatic competence in breast cancer. Cancer Res, 2014. 74(21): p. 6330-40.
44. Zanuy, M., et al., Cyclin-dependent kinases 4 and 6 control tumor progression and direct glucose oxidation in the pentose cycle. Metabolomics, 2012. 8(3): p. 454-464.
45. Pare, R., J.S. Shin, and C.S. Lee, Increased expression of senescence markers p14(ARF) and p16(INK4a) in breast cancer is associated with an increased risk of disease recurrence and poor survival outcome. Histopathology, 2016. 69(3): p. 479-91.
46. Brown, V.L., et al., p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol, 2004. 122(5): p. 1284-92.
47. Li, Z., et al., Significance of MMP11 and P14(ARF) expressions in clinical outcomes of patients with laryngeal cancer. Int J Clin Exp Med, 2015. 8(9): p. 15581-90.
48. Yoshinaga, M., F.G. Buchanan, and R.N. DuBois, 15-LOX-1 inhibits p21 (Cip/WAF 1) expression by enhancing MEK-ERK 1/2 signaling in colon carcinoma cells. Prostaglandins Other Lipid Mediat, 2004. 73(1-2): p. 111-22.
49. Adnane, J., et al., Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene, 2000. 19(47): p. 5338-47.
50. Xu, G., et al., Leukemia inhibitory factor inhibits the proliferation of gastric cancer by inducing G1-phase arrest. J Cell Physiol, 2018.
51. Foster, D.A., et al., Regulation of G1 Cell Cycle Progression: Distinguishing the Restriction Point from a Nutrient-Sensing Cell Growth Checkpoint(s). Genes Cancer, 2010. 1(11): p. 1124-31.
52. Wang, J., et al., Role of p14ARF-HDM2-p53 axis in SOX6-mediated tumor suppression. Oncogene, 2016. 35(13): p. 1692-702.