研究生: |
蔡朝仁 Chao-Jen Tsai |
---|---|
論文名稱: |
微直接甲醇燃料電池陽極微流道內CO2與甲醇水溶液之雙相流熱晶格波茲曼模擬 |
指導教授: | 洪哲文 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 微直接甲醇燃料電池 、熱晶格波茲曼法 、雙相流 、馬里哥尼效應 、熱毛細遷移 |
外文關鍵詞: | mDMFC, TLBM, two-phase flow, Marangoni effect, thermocapillary migration |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
討微型直接甲醇燃料電池(micro direct methanol fuel cell, uDMFC)陽極微流道內CO2氣泡之移除情形。在介觀(mesoscopic)尺度下,使用熱晶格波茲曼法(Thermal Lattice Boltzmann Method, LBM)用於模擬液氣雙相流(甲醇水溶液/CO2氣泡)的流動現象及排除方法。
以水平放置的微流道,觀察其流動情形與排除速度,其中考慮表面張力(surface tension)、液固介面力(fluid-solid interaction force)與浮力(buoyancy force),並有考慮溫度影響。從不同幾何形狀,以及流道管徑、親疏水性表面性質、幾何形狀與溫度變化等等問題探討,並針對熱毛細效應(Marangoni effect)研究其效果。藉此了解並排除氣泡阻塞在微流道內的情況發生。
直管微流道內,以較親水表面氣泡移動速度最快;而較疏水、漸親水與漸疏水表面其氣泡移動速度均較慢。利用熱毛細效應時,則漸高溫之流場氣泡移動速度會變快;而漸低溫之流場則會變慢。當入口出口溫差越小時,則會因熱毛細效應減弱使氣泡往高溫區移動的驅動力變小,氣泡移動速度變慢。利用此效應使阻塞在孔洞的氣泡順利通過,則以前段漸高溫流場為最佳,熱毛細效應效果最好,入口流速所需最低即可順利通過孔洞。
漸縮式、漸擴式與直管微流道之入口質量流率均相同,且單位時間內流量體積亦相等。在高溫流場內,漸擴式的氣泡移動速度較快。當採漸高溫流場時,其氣泡移動速度提升最多且最快,即利用熱毛細效應使氣泡往高溫區移動的效果最佳,其對於氣泡移除最為有利。
總結此研究,較親水表面或漸高溫流場,皆較有利於氣泡移除,而漸擴式親水性表面微流道之漸高溫流場為最佳。故此類型之微流道,將最有利CO2氣泡的移除,以提高微型直接甲醇燃料電池之整體性能。
[1]http://www.bp.com/statisticalreview
[2]Argyropoulos, P., Scott, K., and Taama, W. M., “Gas evolution and power performance in direct methanol fuel cells,” Journal of Applied Electrochemistry, Vol. 29, No. 6, pp. 661-669, 1999.
[3]Lu, G. Q., and Wang, C. Y., “Electrochemical and flow characterization of a direct methanol fuel cell,” Journal of Power Sources, Vol. 134, No. 1, pp. 33-40, 2004.
[4]Yang, H., Zhao, T. S., and Te, Q., “In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields,” Journal of Power Sources, Vol. 139, No. 1-2, pp. 79-90, 2005.
[5]Yang, H., and Zhao, T. S., “Effect of anode flow field design on the performance of liquid feed direct methanol fuel cells,” Electrochimica Acta, Vol. 50, No. 16-17, pp. 3243-3252, 2005.
[6]Wong, C. W., Zhao, T. S., Ye, Q., and Liu, J. G., “Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance,” Journal of The Electrochemical Society, Vol. 152, No. 8, pp. A1600-A1605, 2005.
[7]Litterst, C., Eccarius, S., Hebling, C., Zengerle, R., and Koltay, P., “Increasing μDMFC efficiency by passive CO2 bubble removal and discontinuous operation,” Journal of Micromechanics and Microengineering, Vol. 16, No. 9, pp. S248-S253, 2006.
[8]Young, N. O., Goldstein, J. S., and Block, M. J., “The motion of bubbles in a vertical temperature gradient,” Journal of Fluid Mechanics, Vol. 6, No. 3, pp. 350-356, 1959.
[9]Jun, K. T., and Kim, C. J. “Microscale pumping with traversing bubbles in microchannels,” in Proc. IEEE Solid-State Sensor Actuator Workshop, Hilton Head Island, SC, pp. 144–147, 1996.
[10]Bratukhin, Y. K., Kostarev, K. G., Viviani, A., and Zuev, A. L., “Experimental study of Marangoni bubble migration in normal gravity,” Experiments in Fluids, Vol. 38, No. 5, pp. 594-605, 2005.
[11]Frisch, U., Hasslacher, B., and Pomeau, Y., “Lattice-gas automata for the Navier-Stokes equation,” Physical Review Letters, Vol.56, No. 14, pp. 1505-1508, 1986.
[12]Frisch, U., D'Humières, D., Hasslacher, B., Lallemand, P., Pomeau, Y., and Rivet, J. R., “Lattice gas hydrodynamics in two and three dimensions,” Complex Systems ,Vol. 1, No. 4, pp. 649-707, 1987.
[13]McNamara, G. R., and Zanetti, G., “Use of the boltzmann equation to simulate lattice-gas automata,” Physical Review Letters, Vol. 61, No. 20, pp. 2332-2335, 1988.
[14]Higuera, F., and Jimènez, J., “Boltzmann approach to lattice gas simulations,” Europhysics Letters, Vol. 9, No. 7, pp. 663-668, 1989.
[15]Koelman, J. M. V. A., “A simple lattice Boltzmann scheme for Navier Stokes fluid flow,” Europhysics Letters, Vol. 16, No. 57, pp. 603-607, 1991.
[16]Qian, Y. H., D'Humières, D., and Lallemand, P., “Lattice BGK models for Navier-Stokes equation,” Europhysics Letters, Vol. 17, No. 6, pp. 479-484, 1992.
[17]Gunstensen, A. K., Rothman, D. H., Zaleski, S., and Zanetti, G., “Lattice Boltzmann model of immiscible fluids,” Physical Review A, Vol. 43, No. 8, pp. 4320-4327, 1991.
[18]Ginzburg I., and Steiner K., “Lattice Boltzmann model for free-surface flow and its application to filling process in casting,” Journal of Computational Physics, Vol. 185, No. 1, pp.61-99, 2003.
[19]Shan, X. and Chen, H., “Lattice Boltzmann model for simulating flows with multiple phases and components,” Physical Review A, Vol. 47, No. 3, pp. 1815-1820, 1993.
[20]Shan, X. and Chen, H., “Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation,” Physical Review E, Vol. 49, No. 4, pp. 2941-2948, 1994.
[21]Yang, Z. L., Palm, B., and Sehgal, B. R.,“Numerical simulation of bubbly two-phase flow in a narrow channel,” International Journal of Heat and Mass Transfer, Vol. 45, No. 3, pp. 631-639, 2002.
[22]Sukop, M. C., and Or, D., “Invasion percolation of single component, multiphase fluids with Lattice Boltzmann models,” Physica B, Vol. 338, No.1-4, pp.298-303, 2003.
[23]Swift, M. R., Osborn, W. R., Yeomans, J. M., “Lattice Boltzmann simulation of nonideal fluids,” Physical Review Letters, Vol.75, No. 5, pp. 830-833, 1995.
[24]Frank, X., and Li, H. Z., “Complex flow around a bubble rising in a non-Newtonian fluid,” Physical Review E, Vol. 71, No. 3, pp. 036309, 2005.
[25]Luo, L. S., “Unified theory of lattice Boltzmann models for nonideal gases,” Physical Review Letters, Vol.81 , No. 8, pp. 1618-1621, 1998.
[26]Luo, L. S., and Girimaji, S. S., “Lattice Boltzmann model for binary mixtures,” Physical Review E, Vol. 66, No. 3, pp. 035301, 2002.
[27]Inamuro, T., Ogata, T., and Ogino, F., “Numerical simulation of bubble flows by the lattice Boltzmann method,” Future Generation Computer Systems, Vol. 20, No. 6, pp. 959-964, 2004.
[28]Inamuro, T., Ogata, T., Tajima, S., and Konishi, N., “A lattice Boltzmann method for incompressible two-phase flows with large density differences,” Journal of Computational Physics, Vol. 198, No. 2, pp. 628-644, 2004.
[29]Alexander, F. J., Chen, S., and Sterling, J. D., “Lattice Boltzmann thermohydrodynamics,” Physical Review E, Vol. 47, No. 4, pp. R2249-R2252, 1993.
[30]Shan, X., “Simulation of Rayleigh-Bénard convection using lattice Boltzmann method,” Physical Review E, Vol. 55, No. 3, pp. R2780-R2788, 1997.
[31]Yuan, P., and Schaefer, L., “A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems—Part 1. Theoretical foundation,” Journal of Fluids Engineering, Vol. 128, No. 1, pp. 142-150, 2006.
[32]Yuan, P., and Schaefer, L., “A thermal lattice Boltzmann two-phase flow model and its application to heat transfer problems—Part 2. Integration and validation,” Journal of Fluids Engineering, Vol. 128, No. 1, pp. 151-156, 2006.
[33]Fei, K., Cheng, C. H., and Hong, C. W., “Lattice Boltzmann simulations of CO2 bubble dynamics at the anode of a □DMFC,” ASME Journal of Fuel Cell Science and Technology, Vol. 3, No. 2, pp. 180-187, 2006.
[34]Zou, Q., and He, X., “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,” Physics of Fluids, Vol. 9, No. 6, pp. 1591-1598, 1997.
[35]Shi, Y., Zhao, T. S., and Guo, Z. L., “Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit,” Physical Review E, Vol. 70, No. 62, pp. 066310, 2004.
[36]Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R., and Ogino, F., “A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem,” Journal of Computational Physics, Vol. 179, No. 1, pp. 201-215, 2002.
[37]Takahashi, K., Yoshino, K., Hatano, S., and Nagayama, K., “Novel applications of thermally controlled microbubble driving system,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), pp. 286-289, 2001.