簡易檢索 / 詳目顯示

研究生: 林修毅
Lin, Hsiu-Yi
論文名稱: 一個使用於突變式功能驗證的靜態機率分析法
A Statically Probabilistic Analysis Method under Mutation Analysis for Functional Qualification
指導教授: 王俊堯
Wang, Chun-Yao
口試委員: 王俊堯
溫宏斌
林恆民
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 31
中文關鍵詞: 突變式分析法功能驗證功能驗證品管
外文關鍵詞: Mutation Analysis, Functional Verification, Functional Qualification
相關次數: 點閱:53下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Mutation Analysis (MA) is a fault-based simulation technique that is used to measure
    the quality of testbenches in error (mutant) detection. Although MA effectively
    reports the living mutants to designers, it suffers from the high simulation
    and analysis cost. This paper presents a probabilistic MA preprocessing technique,
    Error Propagation Analysis (EPA), to speed up the MA process. EPA can
    statically estimate the probability of the error propagation with respect to each mutant
    for guiding the observation-point insertion. The inserted observation-points
    will reveal a mutant’s status earlier during the simulation such that some useless
    testcases can be discarded later. Additionally, EPA can generate a set of
    unsensitized-targets for each living mutant to help designers improve their testbench
    quality. We use the mutant model from an industrial EDA tool, Certitude,
    to conduct our experiments on the OpenCores’ RT-level designs. The experimental
    results show that the EPA approach can save about 14% CPU time while
    obtaining the same mutant status report as the traditional MA approach.


    在功能驗證各種方法中,突變式分析法 (Mutation Analysis) 屬於
    一種基於錯誤模擬法,其利用錯誤偵測的方式衡量測試平台的品質。
    雖然突變式分析法可以指出電路中的潛在錯誤 (Living Mutant),但其
    所消耗的模擬和分析時間非常大。這篇論文提出了一種機率式的突變
    式分析法前置作業,可用來加快突變式分析法的整體執行時間,此方
    法稱作「錯誤傳遞分析法」(Error Propagation Analysis)。錯誤傳遞分
    析法使用靜態的機率運算,估計每一個在電路中的潛在錯誤傳遞的機
    率,再利用其結果作為加入觀察點位置的參考。在電路中的觀察點可
    以在電路模擬中提早判斷出錯誤的狀態,若有測試資料在電路模擬時
    無法在觀察點中產生錯誤的資訊,這些測試資料即可在執行突變式分
    析法前先移除。除此之外,錯誤傳遞分析法可以針對每一個潛在錯誤,
    自動產生對應的「未觸發目標」作為潛在錯誤可能發生的來源,以幫
    助電路設計者改善測試平台的品質。我們這裡使用產業界的電腦輔助
    設計工具─Certitude,以及OpenCore 網站上所公布的測試電路來輔
    助我們的實驗。實驗結果顯示出在相同的錯誤模型下,使用錯誤傳遞
    分析法作為突變式分析法的前置作業,能有效地減少約14%的執行時
    間。

    Abstract ………………………………………………………i 1 Introduction ………………………………………………1 2 Preliminaries ………………………………………………5 2.1 Cost Reduction Techniques in MA ……………………5 2.2 Living Mutant Analysis …………………………………9 3 Proposed Approach …………………………………………11 3.1 Overview …………………………………………………11 3.2 Terminology ………………………………………………12 3.2.1 Mutant Controllability (MC) ………………………12 3.2.2 Control Data Flow Graph (CDFG) ……………………14 3.3 Mutant Controllability Estimation Formulae …………14 3.3.1 Unary operational nodes ………………………………15 3.3.2 Binary operational nodes ………………………………16 3.3.3 Control nodes ……………………………………………17 3.4 MC Estimation Considering the Sequential Circuits …19 3.5 The Observation-Point Selection …………………………20 3.6 Unsensitized-Target Extraction ……………………………22 3.7 Overall Algorithm …………………………………………22 4 Experimental Results …………………………………………24 5 Conclusion ………………………………………………………28

    [1] Icarus Verilog. [Online]. Available: http://iverilog.icarus.com/
    [2] OpenCores. [Online]. Available: http://opencores.org/
    [3] SpringSoft. [Online]. Available: http://www.springsoft.com/
    [4] S. Anellal and B. Kaminska, “Scheduling of a control and data flow graph,” in Proc. IEEE
    Int. Symp. on Circuits and Systems, May 1993, pp. 1666 – 1669.
    [5] J. Arlat, A. Costes, Y. Crouzet, J. Laprie, and D. Powell, “Fault injection and dependability
    evaluation of fault-tolerant systems,” IEEE Trans. Computers, vol. 42, no. 8, pp. 913 – 923,
    Aug. 1993.
    [6] A. Benso, A. Bosio, S. Di Carlo, and R. Mariani, “A functional verification based fault
    injection environment,” in Proc. Defect and Fault-Tolerance in VLSI Systems, 2007, pp. 114
    – 122.
    [7] A. Benso, M. Rebaudengo, M. Reorda, and P. Civera, “An integrated HW and SW fault
    injection environment for real-time systems,” in Proc. Defect and Fault Tolerance in VLSI
    Systems, 1998, pp. 117 – 122.
    [8] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection: Help for the practicing
    programmer,” IEEE Trans. Computers, vol. 11, no. 4, pp. 34 – 41, Apr. 1978.
    [9] L. Drucker, “Functional coverage metrics–the next frontier,” in EETimes, Aug. 2002.
    [10] F. Ferrandi, F. Fummi, and D. Sciuto, “Implicit test generation for behavioral VHDL models,”
    in Proc. Int. Test Conference, 1998, pp. 587 – 596.
    [11] A. Fin and F. Fummi, “A VHDL error simulator for functional test generation,” in Proc.
    Design, Automation and Test in Europe, 2000, pp. 390 – 395.
    [12] A. Gluska, “Coverage-oriented verification of banias,” in Proc. Design Automation Conference,
    2003, pp. 280 – 285.
    [13] R. Hamlet, “Testing programs with the aid of a compiler,” IEEE Trans. Software Engineering,
    vol. SE-3, no. 4, pp. 279 – 290, July 1977.
    [14] M. Hampton and S. Petithomme, “Leveraging a commercial mutation analysis tool for research,”
    in Proc. Testing: Academic and Industrial Conference Practice and Research Techniques
    - Mutation, 2007, pp. 203 – 209.
    [15] W. Howden, “Weak mutation testing and completeness of test sets,” IEEE Trans. Software
    Engineering, vol. SE-8, no. 4, pp. 371 – 379, July 1982.
    [16] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,”
    IEEE Transactions on Software Engineering, vol. 35, no. 6, pp. 1 – 32, 2010.
    [17] T. Lv, H. wei Li, and X. wei Li, “Automatic selection of internal observation signals for
    design verification,” in Proc. VLSI Test Symposium, 2009, pp. 203 –208.
    [18] J. C. Miller and C. J. Maloney, “Systematic mistake analysis of digital computer programs,”
    Commun. ACM, vol. 6, pp. 58 – 63, Feb. 1963.
    [19] R. Namballa, N. Ranganathan, and A. Ejnioui, “Control and data flow graph extraction for
    high-level synthesis,” in Proc. IEEE Annual Symposium on VLSI, Feb. 2004, pp. 187 – 192.
    [20] A. Offutt, “The coupling effect: fact or fiction,” in Proc. Symp. Software Testing, Analysis,
    and Verification, 1989, pp. 131 – 140.
    [21] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” in Proc. Mutation,
    2000, pp. 45 – 55.
    [22] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM Trans. Software
    Engineering and Methodology, vol. 1, pp. 5 – 20, Jan. 1992.
    [23] S. Tasiran and K. Keutzer, “Coverage metrics for functional validation of hardware designs,”
    IEEE Design and Test of Computers, vol. 18, no. 4, pp. 36 – 45, Jul./Aug. 2001.
    [24] M. Woodward and K. Halewood, “From weak to strong, dead or alive? an analysis of some
    mutation testing issues,” in Proc. Workshop Software Testing, Verification, and Analysis,
    1988, pp. 152 –158.
    [25] H. H. Yeh and C. Y. Huang, “Automatic constraint generation for guided random simulation,”
    in Proc. Asia and South Pacific Design Automation Conference, 2010, pp. 613 – 618.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE