研究生: |
王柏勛 Wang, Po-Hsun |
---|---|
論文名稱: |
高頻光聲影像系統及其小動物造影之應用 High Frequency Photoacoustic Imaging System and Its Applications in Small Animal Imaging |
指導教授: |
李夢麟
Li, Meng-Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 光聲顯微術 、超音波顯微術 、微細血管造影 、阿基里斯腱炎 、血腦屏障 |
外文關鍵詞: | photoacoustic microscopy, ultrasonic microscopy, microvascular imaging, Achilles tendinitis, blood-brain barrier |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
小動物常用來做為研究各種疾病的實驗室模型,小動物影像能縮短相關研究及藥物開發時程,提升研究的品質,然而其較臨床醫學影像需要更高的解析度及影像對比。此外,近來對於開發能顯示觀察病理過程中微細血管脈絡生長及重建的相關技術需求也有愈來愈高的趨勢。在本研究中,我們建立了一套非侵入式高頻暗場共軛焦光聲顯微影像系統,其透過光聲效應來偵測被組織吸收的光子,基於組織中血液本身對於雷射光的高吸收對比及透過高頻超音波的偵測方式,結合了光學和聲學兩者的優點以提供高對比及高空間解析度,可用來進行小動物微細血管脈絡造影。此系統可工作於25 MHz及50 MHz兩組工作頻率,可提供B-scan與C-scan兩種掃瞄模式。當工作頻率為25 MHz時,此系統可提供68 um軸向解析度、171 um橫向解析度及至少6 mm的穿透深度;當工作在50 MHz的頻率時,可提供高達36 um的軸向解析度、65 um橫向解析度及至少3 mm的穿透深度。此系統亦可進行高頻超音波掃瞄,以提供資訊互補之傳統超音波B-mode結構性影像。此系統並經活體小動物實驗驗證,確能提供高解析度及高對比小鼠皮下微細血管脈絡及腫瘤血管分布影像。本研究並嘗試開發此光聲顯微影像系統於生醫研究上的新應用,將其用於小鼠損傷的阿基里斯腱內微細血管增生的監控上,以及搭配可調光吸收波長之金奈米桿粒子作為光聲造影對比劑,利用金奈米桿粒子對近紅光的強吸收及其因奈米尺寸大小而易由血腦屏障開啟區域滲入腦組織的特性,更進一步地將此系統應用監控小動物模型之聚焦式超音波誘發血腦屏障開啟過程,驗證其可行性。未來將持續改善系統效能與活體實驗的流程,期望未來能提供運動醫學及血腦屏障開啟等相關診療及研究一個新的、有用的影像工具。
Small animals are the preferred laboratory models for studying various diseases. Small animal imaging provides the opportunity to evaluate pathologic progression in a much-compressed time frame while it requires much higher resolution and image contrast than clinical medical imaging. Moreover, there is a significant need to develop technologies for visualizing micro-vascular growth and remodeling in pathogenic process. In this study, we developed a non-invasive, high frequency dark-field confocal photoacoustic microscope (PAM) system. PAM, a hybrid biophotonic imaging technique detecting absorbed photons ultrasonically through the photoacoustic effect, has the potential to address these needs mentioned above. With strong endogenous blood optical absorption contrast and high frequency ultrasound detection, PAM can provide high contrast and high spatial resolution for micro-vasculature imaging of small animals. Currently, we have developed 25-MHz and 50-MHz dark-field confocal PAM systems. Our PAM system provides two imaging modes – B-scan (2D imaging) and C-scan (3D imaging). When using a 25-MHz ultrasonic transducer, its maximum achievable resolution is 68 um in axial and 171 um in lateral, and the penetration depth can reach at least 6 mm. With a 50-MHz transducer, higher resolution can be achieved – 36 um in axial and 65 um in lateral while compromising with penetration depth – at least 3 mm. The performance of our PAM is further verified with in vivo small animal experiments – high resolution and high contrast subcutaneous and tumor micro-vasculature imaging of mice can be obtained. We also tried to explore new biomedical applications of our PAM, applying it to image micro-vascular changes in injured Achilles tendons of mice. In addition, by taking advantage of the strong near-infrared absorption of gold nanorods (AuNRs) and their extravasation tendency from blood-brain barrier (BBB) opening foci due to their nano-scale sizes, we employed our PAM system along with AuNRs as photoacoustic contrast agents to monitor focused-ultrasound induced BBB opening in small animal models in vivo, verifying the feasibility. Future work will focus on optimization of our PAM system and in vivo small animal experimental procedures for the tendon and BBB-opening imaging. Our preliminary studies show promising of photoacoustic imaging as a useful aid of sports medicine and BBB opening monitoring.
[1] A. G. Bell, “On the Production and Reproduction of Sound by Light,” American Journal of Science 20, 305-324 (Oct. 1880).
[2] K. Song, and L. V. Wang, “Deep reflection-mode photoacoustic imaging of biological tissue,” Journal of Biomedical Optics 12, 060503 (Nov. 2007).
[3] L. V. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE Journal of Selected Topics on Quantum Electronics 14, 171-179 (Jan. 2008).
[4] H. F. Zhang, K. Maslov, M.-L. Li, G. Stoica, and L. V. Wang, “In vivo volumetric imaging of subcutaneous microvasculature by photoacoustic microscopy,” Optics Express 14, 9317-9323 (Oct. 2006).
[5] J. T. Oh, M. L. Li, H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Three-dimensional imaging of skin melanoma in vivo by dual-wavelength photoacoustic microscopy,” Journal of Biomedical Optics 11, 034032 (May/Jun. 2006).
[6] H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Imaging acute thermal burns by photoacoustic microscopy,” Journal of Biomedical Optics 11, 054033 (Sep./Oct. 2006).
[7] M. Pramanik, G. Ku, C. H. Li, and L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Medical Physics 35, 2218-2223 (Jun. 2008).
[8] X. Wang, X. Xie, G. Ku, G. Stoica, and L. V. Wang, “Non-invasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” Journal of Biomedical Optics 11, 024015 (Mar./Apr. 2006).
[9] X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Optics Letters 32, 3002-3004 (2007).
[10] 魏振瑋, “使用金奈米粒子之流速估測方法,” 國立台灣大學電機工程學研究所碩士論文 (Jun. 2005).
[11] L. Li, R. Zemp, G. Lungu, G. Stoica, and L. V. Wang, “Photoacoustic imaging of lacZ gene expression in vivo,” Journal of Biomedical Optics 12, 020504 (Mar. 2007).
[12] http://omlc.ogi.edu/classroom/ece532/class3/muaspectra.html
[13] P. Suetens, Fundamentals of Medical Imaging (Cambridge University Press, 2002).
[14] L. V. Wang and H.-i Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
[15] V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Second Edition (SPIE Press, 2007).
[16] L. I. Grossweiner, The Science of Phototherapy (CRC Press, 1994).
[17] http://omlc.ogi.edu/classroom/ece532/class3/musp.html
[18] A. C. Tam, “Applications of photoacoustic sensing techniques,” Reviews of Modern Physics 58, 381-431 (1986).
[19] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Review of Scientific Instruments 77, 041101 (Apr. 2006).
[20] 廖超康, “以逆向式光聲影像進行光吸收係數重建及血流量測,” 國立台灣大學電機工程所博士論文 (Jul. 2007).
[21] G. J. Diebold, T. Sun, and M. I. Khan , “Photoacoustic monopole radiation in one, two, and three dimensions,” Physical Review Letters 67, 3384-3387 (Dec. 1991).
[22] S. L. Jacques, “Computer simulation of pressure wave generation in biological media by pulsed lasers with various beam profiles,” Proceedings of SPIE 5068, 92-103 (2003).
[23] http://omlc.ogi.edu/news/oct02/saratov2002/slide4.htm
[24] K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Optics Letters 30, 625-627 (Mar. 2005).
[25] E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of the mouse brain using photoacoustic microscopy,” Journal of Applied Physics 105, 102027 (May 2009).
[26] E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” Journal of Biomedical Optics 14, 020502 (Mar. 2009).
[27] M. L. Li, J. C. Wang, J. A. Schwartz, K. L. Gill-Sharp, G. Stoica, and L. V. Wang, “In-vivo photoacoustic microscopy of nanoshell extravasation from solid tumor vasculature,” Journal of Biomedical Optics 14, 010507 (Feb. 2009).
[28] http://omlc.ogi.edu/news/jan98/skinoptics.html
[29] S. M. Chin, P. H. Wang, and M.-L. Li, “Combined High Frequency Photoacoustic and Ultrasonic Microscopy for Microvasculature Imaging of Small Animals,” Annual Symposium on Biomedical Engineering and Technology (2007).
[30] Z. X. Xie, L. V. Wang, and H. F. Zhang, “Monte Carlo simulation of light transport in dark-field confocal photoacoustic microscopy,” Proceedings of SPIE 7177, 717717 (2009).
[31] T. A. Wren, S. A. Yerby, G. S. Beaupré, and D. R. Carter, “Mechanical properties of the human achilles tendon,” Clinicial Biomechanics 16, 245-51 (2001).
[32] R. J. de Vos, A. Weir, L. P. Cobben, and J. L. Tol, “The Value of Power Doppler Ultrasonography in Achilles Tendinopathy,” The American Journal of Sports Medicine 35, 1696-1701 (2007).
[33] 盧聖介, “包覆空氣微脂體於高頻超音波影像與聲學非線性性質研究與應用,” 國立清華大學生醫科學與環境工程研究所碩士學位論文 (Jun. 2007).
[34] A. Bowden and C. Elliss, Expert Reviews in Molecular Medicine (Cambridge University Press, 2003).
[35] K. H. Song, C. H. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” European Journal of Radiology 70, 227-231 (May 2009).
[36] J. Liu, A. L. Levine, J. S. Mattoon, M. Yamaguchi, R. J. Lee, X. Pan, and T. J. Rosol, “Nanoparticles as image enhancing agents for ultrasonography,” Physics in Medicine and Biology 51, 2179-2189 (2006)
[37] L. Ohberg and H. Alfredson, “Effects of neovascularisation behind the good results with eccentric training in chronic mid-portion tendinosis?,” Knee Surg Sports Traumatol Arthrosc 12, 465-470 (Sep. 2004).