研究生: |
鍾宜軒 Chung, Yi-Hsuan |
---|---|
論文名稱: |
以鉑修飾之高分散二氧化鈦奈米管進行光催化產氫研究 Photocatalytic Hydrogen Production by Highly Dispersed Pt-Decorated Titania Nanotubes |
指導教授: |
楊家銘
Yang, Chia-Min |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 張淑閔 Chang, Sue-Min |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 二氧化鈦 、奈米管 、鉑修飾 、光催化產氫反應 、形貌調控 |
外文關鍵詞: | titanate nanotube, titania nanorod, Pt-decorated |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用水熱法合成鈦酸鹽奈米管以及二氧化鈦材料,並藉由SEM和XRD觀察其在不同pH值下的形貌與結構。發現將水熱24小時後的合成液在35 ℃下攪拌三天並搭配透析的方法,可製備出長度較短且整體較分散的奈米管。
為觀察短奈米管在光催化產氫活性上的表現,我們將短奈米管鍛燒後,以光沉積的方式負載1 wt%的金屬鉑於表面,並將其結果與一般合成方式製備之奈米管作比較。我們發現材料中的鈉對於活性有很大的影響,且依據XPS的結果,不同製備方法所合成的材料其表面鉑的價態會隨著反應而改變,因此在穩定性上有差異。
除了以後修飾的方式調控奈米管之外,我們研發出以一步驟合成法製備的鉑修飾二氧化鈦材料,並製備不同鉑含量的材料應用於光催化產氫反應中,找到最優化的條件。最後在本研究的結果中,發現在pH=2且含有1 wt%的鉑擁有最高的產氫活性。
In this study, titanate and titania nanotubes (TNTs) were prepared under different pH values via hydrothermal treatment, and their morphologies and structures were analyzed using SEM and XRD. We found that nanotubes with much shorter length could be obtained by stirring and dialysis as post hydrothermal treatment.
To study the photocatalytic activity performance of the short TNTs obtained with post-treatment for H2 production, the short TNTs were loaded with 1 wt% Pt by photodeposition, and the results were compared with that of the TNTs synthesized via conventional method (without post-treatment). We found that the photocatalytic activity performances were strongly affected by the presence of Na in TNTs, and TNTs prepared with different methods showed difference in the stability owing to the changes of Pt chemical states during catalysis according to XPS results.
In addition to the post-treatment, we further developed a one-pot synthesis method for Pt incorporation into TNTs, and various Pt amount were tested to optimize photocatalytic activity for H2 production. Based on our results, TNTs with 1 wt% Pt obtained under pH=2 showed highest performance among all the samples.
1. Muradov, N., Emission-free fuel reformers for mobile and portable fuel cell applications. Journal of Power Sources 2003, 118 (1-2), 320-324.
2. Das, D.; Veziroǧlu, T. N., Hydrogen production by biological processes: a survey of literature. International journal of hydrogen energy 2001, 26 (1), 13-28.
3. Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y., An overview of hydrogen production technologies. Catalysis Today 2009, 139 (4), 244-260.
4. Steinfeld, A., Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. International Journal of Hydrogen Energy 2002, 27 (6), 611-619.
5. Grigoriev, S.; Porembsky, V.; Fateev, V., Pure hydrogen production by PEM electrolysis for hydrogen energy. International Journal of Hydrogen Energy 2006, 31 (2), 171-175.
6. Nowotny, J.; Bak, T.; Nowotny, M.; Sheppard, L., Titanium dioxide for solar-hydrogen I. Functional properties☆. International Journal of Hydrogen Energy 2007, 32 (14), 2609-2629.
7. Shaner, M. R.; Atwater, H. A.; Lewis, N. S.; McFarland, E. W., A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy & Environmental Science 2016, 9 (7), 2354-2371.
8. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37.
9. Tan, H. L.; Amal, R.; Ng, Y. H., Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO4: a review. Journal of Materials Chemistry A 2017, 5 (32), 16498-16521.
10. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009, 38 (1), 253-78.
11. Yesodharan, E.; Yesodharan, S.; Grätzel, M., Photolysis of water with supported noble metal clusters, the fate of oxygen in titania based water cleavage systems. Solar energy materials 1984, 10 (3-4), 287-302.
12. Grätzel, M., Photoelectrochemical cells. nature 2001, 414 (6861), 338.
13. Galińska, A.; Walendziewski, J., Photocatalytic water splitting over Pt− TiO2 in the presence of sacrificial reagents. Energy & Fuels 2005, 19 (3), 1143-1147.
14. Mo, S.-D.; Ching, W. Y., Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B 1995, 51 (19), 13023-13032.
15. Chen, X.; Mao, S. S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical reviews 2007, 107 (7), 2891-2959.
16. Chen, X.; Shen, S.; Guo, L.; Mao, S. S., Semiconductor-based photocatalytic hydrogen generation. Chemical reviews 2010, 110 (11), 6503-6570.
17. Kawai, T.; Sakata, T., Photocatalytic hydrogen production from liquid methanol and water. Journal of the Chemical Society, Chemical Communications 1980, (15), 694-695.
18. Park, H.; Park, Y.; Kim, W.; Choi, W., Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 1-20.
19. Yu, J.; Wang, W.; Cheng, B.; Su, B.-L., Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. The Journal of Physical Chemistry C 2009, 113 (16), 6743-6750.
20. Sajjad, A. K. L.; Shamaila, S.; Zhang, J., Study of new states in visible light active W, N co-doped TiO2 photo catalyst. Materials Research Bulletin 2012, 47 (11), 3083-3089.
21. Muruganandham, M.; Kusumoto, Y., Synthesis of N, C codoped hierarchical porous microsphere ZnS as a visible light-responsive photocatalyst. The Journal of Physical Chemistry C 2009, 113 (36), 16144-16150.
22. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. science 2001, 293 (5528), 269-271.
23. Dong, F.; Zhao, W.; Wu, Z.; Guo, S., Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO(2) nanoparticles prepared by thermal decomposition. J Hazard Mater 2009, 162 (2-3), 763-70.
24. Yu, H.; Irie, H.; Shimodaira, Y.; Hosogi, Y.; Kuroda, Y.; Miyauchi, M.; Hashimoto, K., An efficient visible-light-sensitive Fe (III)-grafted TiO2 photocatalyst. The Journal of Physical Chemistry C 2010, 114 (39), 16481-16487.
25. Bloh, J. Z.; Dillert, R.; Bahnemann, D. W., Ruthenium-modified zinc oxide, a highly active vis-photocatalyst: the nature and reactivity of photoactive centres. Physical Chemistry Chemical Physics 2014, 16 (12), 5833-5845.
26. Wang, B.; Kanhere, P. D.; Chen, Z.; Nisar, J.; Pathak, B.; Ahuja, R., Anion-Doped NaTaO3 for Visible Light Photocatalysis. The Journal of Physical Chemistry C 2013, 117 (44), 22518-22524.
27. Ajayan, P. M., Capillarity-induced filling of carbon nanotubes. Nature 1993, 361 (6410), 333.
28. Tenne, R.; Margulis, L.; Genut, M. e.; Hodes, G., Polyhedral and cylindrical structures of tungsten disulphide. Nature 1992, 360 (6403), 444.
29. Roy, P.; Berger, S.; Schmuki, P., TiO2 nanotubes: synthesis and applications. Angewandte Chemie 2011, 50 (13), 2904-39.
30. Michailowski, A.; AlMawlawi, D.; Cheng, G.; Moskovits, M., Highly regular anatase nanotubule arrays fabricated in porous anodic templates. Chemical physics letters 2001, 349 (1-2), 1-5.
31. Ghicov, A.; Tsuchiya, H.; Macak, J. M.; Schmuki, P., Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications 2005, 7 (5), 505-509.
32. Ruan, C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A., Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. The Journal of Physical Chemistry B 2005, 109 (33), 15754-15759.
33. Hoyer, P., Formation of a titanium dioxide nanotube array. Langmuir 1996, 12 (6), 1411-1413.
34. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C., Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research 2011, 16 (12), 3331-3334.
35. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Formation of titanium oxide nanotube. Langmuir 1998, 14 (12), 3160-3163.
36. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K., Titania nanotubes prepared by chemical processing. Advanced Materials 1999, 11 (15), 1307-1311.
37. Lan, Y.; Gao, X.; Zhu, H.; Zheng, Z.; Yan, T.; Wu, F.; Ringer, S. P.; Song, D., Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials 2005, 15 (8), 1310-1318.
38. Meng, X.-d.; Wang, D.-z.; Liu, J.-h.; Zhang, S.-y., Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Materials Research Bulletin 2004, 39 (14-15), 2163-2170.
39. <2009_Gao_Crystal Structures of Titanate Nanotubes- A Raman Scattering Study.pdf>.
40. Poudel, B.; Wang, W. Z.; Dames, C.; Huang, J. Y.; Kunwar, S.; Wang, D. Z.; Banerjee, D.; Chen, G.; Ren, Z. F., Formation of crystallized titania nanotubes and their transformation into nanowires. Nanotechnology 2005, 16 (9), 1935-1940.
41. Yao, B. D.; Chan, Y. F.; Zhang, X. Y.; Zhang, W. F.; Yang, Z. Y.; Wang, N., Formation mechanism of TiO2 nanotubes. Applied Physics Letters 2003, 82 (2), 281-283.
42. Yang, J. J.; Jin, Z. S.; Wang, X. D.; Li, W.; Zhang, J. W.; Zhang, S. L.; Guo, X. Y.; Zhang, Z. J., Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)(2). Dalton Transactions 2003, (20), 3898-3901.
43. Tsai, C. C.; Nian, J. N.; Teng, H. S., Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH. Applied Surface Science 2006, 253 (4), 1898-1902.
44. Tsai, C. C.; Teng, H. S., Regulation of the physical characteristics of Titania nanotube aggregates synthesized from hydrothermal treatment. Chemistry of Materials 2004, 16 (22), 4352-4358.
45. Chen, S. A.; Nian, J. N.; Tsai, C. C.; Teng, H., Structural Feature and Catalytic Performance of Cu Species Distributed over TiO2 Nanotubes. Journal of the Air & Waste Management Association 2007, 57 (5), 600-605.
46. Tsai, C. C.; Teng, H. S., Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials 2006, 18 (2), 367-373.
47. Zhang, M.; Jin, Z. S.; Zhang, J. W.; Guo, X. Y.; Yang, H. J.; Li, W.; Wang, X. D.; Zhang, Z. J., Effect of annealing temperature on morphology, structure and photocatalytic behavior of nanotubed H2Ti2O4(OH)(2). Journal of Molecular Catalysis a-Chemical 2004, 217 (1-2), 203-210.
48. Ma, R. Z.; Bando, Y.; Sasaki, T., Directly rolling nanosheets into nanotubes. Journal of Physical Chemistry B 2004, 108 (7), 2115-2119.
49. Ma, R. Z.; Bando, Y.; Sasaki, T., Nanotubes of lepidocrocite titanates. Chemical Physics Letters 2003, 380 (5-6), 577-582.
50. Ma, R. Z.; Fukuda, K.; Sasaki, T.; Osada, M.; Bando, Y., Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. Journal of Physical Chemistry B 2005, 109 (13), 6210-6214.
51. Gao, T.; Fjeld, H.; Fjellvåg, H.; Norby, T.; Norby, P., In situ studies of structural stability and proton conductivity of titanate nanotubes. Energy & Environmental Science 2009, 2 (5), 517.
52. Gao, T.; Wu, Q. L.; Fjellvag, H.; Norby, P., Topological properties of titanate nanotubes. Journal of Physical Chemistry C 2008, 112 (23), 8548-8552.
53. Zhang, S.; Peng, L. M.; Chen, Q.; Du, G. H.; Dawson, G.; Zhou, W. Z., Formation mechanism of H2Ti3O7 nanotubes. Physical review letters 2003, 91 (25), 256103.
54. Zhang, S.; Chen, Q.; Peng, L. M., Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B 2005, 71 (1).
55. Bavykin, D. V.; Parmon, V. N.; Lapkin, A. A.; Walsh, F. C., The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry 2004, 14 (22), 3370-3377.
56. Bavykin, D. V.; Walsh, F. C., Elongated Titanate Nanostructures and Their Applications. European Journal of Inorganic Chemistry 2009, (8), 977-997.
57. Bavykin, D. V.; Kulak, A. N.; Walsh, F. C., Metastable Nature of Titanate Nanotubes in an Alkaline Environment. Crystal Growth & Design 2010, 10 (10), 4421-4427.
58. Chen, Q.; Du, G. H.; Zhang, S.; Peng, L. M., The structure of trititanate nanotubes. Acta Crystallographica Section B-Structural Science 2002, 58, 587-593.
59. Chen, Q.; Zhou, W. Z.; Du, G. H.; Peng, L. M., Trititanate nanotubes made via a single alkali treatment. Advanced Materials 2002, 14 (17), 1208-+.
60. Sun, X. M.; Li, Y. D., Synthesis and characterization of ion-exchangeable titanate nanotubes. Chemistry-a European Journal 2003, 9 (10), 2229-2238.
61. Yuan, Z.-Y.; Su, B.-L., Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 241 (1-3), 173-183.
62. Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H., Synthesis of nanotube from a layered H2Ti4O9· H2O in a hydrothermal treatment using various titania sources. Journal of Materials Science 2004, 39 (13), 4239-4245.
63. Zhang, Y. Y.; Jiang, Z. L.; Huang, J. Y.; Lim, L. Y.; Li, W. L.; Deng, J. Y.; Gong, D. G.; Tang, Y. X.; Lai, Y. K.; Chen, Z., Titanate and titania nanostructured materials for environmental and energy applications: a review. Rsc Advances 2015, 5 (97), 79479-79510.
64. Xu, X. J.; Tang, C. C.; Zeng, H. B.; Zhai, T. Y.; Zhang, S. Q.; Zhao, H. J.; Bando, Y.; Golberg, D., Structural Transformation, Photocatalytic, and Field-Emission Properties of Ridged TiO2 Nanotubes. Acs Applied Materials & Interfaces 2011, 3 (4), 1352-1358.
65. Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C., Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Advanced Materials 2006, 18 (21), 2807-2824.
66. Kukovecz, Á.; Hodos, M.; Horváth, E.; Radnóczi, G.; Kónya, Z.; Kiricsi, I., Oriented crystal growth model explains the formation of titania nanotubes. The Journal of Physical Chemistry B 2005, 109 (38), 17781-17783.
67. Tao Gao, H. F., and Poul Norby, Crystal Structures of Titanate Nanotubes A Raman Scattering Study. Inorg. Chem. 2009.
68. Liu, N.; Chen, X. Y.; Zhang, J. L.; Schwank, J. W., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today 2014, 225, 34-51.
69. Wang, W.; Varghese, O. K.; Paulose, M.; Grimes, C. A.; Wang, Q.; Dickey, E. C., A study on the growth and structure of titania nanotubes. Journal of Materials Research 2011, 19 (02), 417-422.
70. Mao, Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S., Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates. The Journal of Physical Chemistry B 2006, 110 (2), 702-710.
71. Bavykin, D. V.; Kulak, A. N.; Walsh, F. C., Control over the Hierarchical Structure of Titanate Nanotube Agglomerates. Langmuir 2011, 27 (9), 5644-5649.
72. Papa, A.-L.; Boudon, J.; Bellat, V.; Loiseau, A.; Bisht, H.; Sallem, F.; Chassagnon, R.; Bérard, V.; Millot, N., Dispersion of titanate nanotubes for nanomedicine: comparison of PEI and PEG nanohybrids. Dalton Transactions 2015, 44 (2), 739-746.
73. Wongkaew, A.; Zhang, Y.; Tengco, J. M. M.; Blom, D. A.; Sivasubramanian, P.; Fanson, P. T.; Regalbuto, J. R.; Monnier, J. R., Characterization and evaluation of Pt-Pd electrocatalysts prepared by electroless deposition. Applied Catalysis B: Environmental 2016, 188, 367-375.
74. Tengco, J. M. M.; Tavakoli Mehrabadi, B. A.; Zhang, Y.; Wongkaew, A.; Regalbuto, J. R.; Weidner, J. W.; Monnier, J. R., Synthesis and electrochemical evaluation of carbon supported Pt-Co bimetallic catalysts prepared by electroless deposition and modified charge enhanced dry impregnation. Catalysts 2016, 6 (6), 83.
75. Sekino, T., Synthesis and applications of titanium oxide nanotubes. In Inorganic and Metallic Nanotubular Materials, Springer: 2010; pp 17-32.
76. Bavykin, D. V.; Friedrich, J. M.; Lapkin, A. A.; Walsh, F. C., Stability of aqueous suspensions of titanate nanotubes. Chemistry of Materials 2006, 18 (5), 1124-1129.
77. Wang, Y. Q.; Hu, G. Q.; Duan, X. F.; Sun, H. L.; Xue, Q. K., Microstructure and formation mechanism of titanium dioxide nanotubes. Chemical Physics Letters 2002, 365 (5-6), 427-431.
78. Zhu, J.; Zhang, D. Q.; Bian, Z. F.; Li, G. S.; Huo, Y. N.; Lu, Y. F.; Li, H. X., Aerosol-spraying synthesis of SiO2/TiO2 nanocomposites and conversion to porous TiO2 and single-crystalline TiOF2. Chemical Communications 2009, (36), 5394-5396.
79. Lin, H.-P.; Mou, C.-Y., Structural and morphological control of cationic surfactant-templated mesoporous silica. Accounts of chemical research 2002, 35 (11), 927-935.
80. Ban, T.; Nakagawa, T.; Ohya, Y., Bottom-Up Synthesis of Titanate Nanosheets in Aqueous Sols and Their Morphology Change by the Addition of Organic Ligands and Dialysis. Crystal Growth & Design 2015, 15 (4), 1801-1807.
81. Geng, F.; Ma, R.; Nakamura, A.; Akatsuka, K.; Ebina, Y.; Yamauchi, Y.; Miyamoto, N.; Tateyama, Y.; Sasaki, T., Unusually stable ~100-fold reversible and instantaneous swelling of inorganic layered materials. Nature communications 2013, 4, 1632.
82. Maluangnont, T.; Matsuba, K.; Geng, F. X.; Ma, R. Z.; Yamauchi, Y.; Sasaki, T., Osmotic Swelling of Layered Compounds as a Route to Producing High-Quality Two-Dimensional Materials. A Comparative Study of Tetramethylammonium versus Tetrabutylammonium Cation in a Lepidocrocite-type Titanate. Chemistry of Materials 2013, 25 (15), 3137-3146.
83. Geng, F.; Ma, R.; Ebina, Y.; Yamauchi, Y.; Miyamoto, N.; Sasaki, T., Gigantic swelling of inorganic layered materials: a bridge to molecularly thin two-dimensional nanosheets. J Am Chem Soc 2014, 136 (14), 5491-500.
84. Ma, R.; Sasaki, T., Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Accounts of chemical research 2015, 48 (1), 136-43.
85. Rosenfeldt, S.; Stoter, M.; Schlenk, M.; Martin, T.; Albuquerque, R. Q.; Forster, S.; Breu, J., In-Depth Insights into the Key Steps of Delamination of Charged 2D Nanomaterials. Langmuir 2016.
86. Uekawa, N.; Asano, E.; Inagaki, Y.; Kojima, T., Low temperature synthesis of titanium oxide sol and gel with Nb doping using dialysis process of metal chloride solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 538, 1-6.
87. Kiatkittipong, K.; Scott, J.; Amal, R., Hydrothermally Synthesized Titanate Nanostructures: Impact of Heat Treatment on Particle Characteristics and Photocatalytic Properties. Acs Applied Materials & Interfaces 2011, 3 (10), 3988-3996.
88. Qian, L.; Du, Z.-L.; Yang, S.-Y.; Jin, Z.-S., Raman study of titania nanotube by soft chemical process. Journal of Molecular Structure 2005, 749 (1-3), 103-107.
89. Ahmed, L. M.; Ivanova, I.; Hussein, F. H.; Bahnemann, D. W., Role of platinum deposited on TiO2 in photocatalytic methanol oxidation and dehydrogenation reactions. International Journal of Photoenergy 2014, 2014.
90. Parayil, S. K.; Kibombo, H. S.; Wu, C.-M.; Peng, R.; Kindle, T.; Mishra, S.; Ahrenkiel, S. P.; Baltrusaitis, J.; Dimitrijevic, N. M.; Rajh, T., Synthesis-dependent oxidation state of platinum on TiO2 and their influences on the solar simulated photocatalytic hydrogen production from water. The Journal of Physical Chemistry C 2013, 117 (33), 16850-16862.
91. Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Torrente-Murciano, L.; Friedrich, J. M.; Walsh, F. C., Deposition of Pt, Pd, Ru and Au on the surfaces of titanate nanotubes. Topics in Catalysis 2006, 39 (3-4), 151-160.
92. Bavykin, D. V.; Milsom, E. V.; Marken, F.; Kim, D. H.; Marsh, D. H.; Riley, D. J.; Walsh, F. C.; El-Abiary, K. H.; Lapkin, A. A., A novel cation-binding TiO2 nanotube substrate for electro-catalysis and bioelectro-catalysis. Electrochemistry Communications 2005, 7 (10), 1050-1058.
93. Morgado Jr, E.; de Abreu, M. A.; Pravia, O. R.; Marinkovic, B. A.; Jardim, P. M.; Rizzo, F. C.; Araújo, A. S., A study on the structure and thermal stability of titanate nanotubes as a function of sodium content. Solid State Sciences 2006, 8 (8), 888-900.
94. Haselmann, G. M.; Eder, D., Early-stage deactivation of platinum-loaded TiO2 using in situ photodeposition during photocatalytic hydrogen evolution. ACS Catalysis 2017, 7 (7), 4668-4675.
95. Yu, Y.; Zhang, P.; Guo, L.; Chen, Z.; Wu, Q.; Ding, Y.; Zheng, W.; Cao, Y., The design of TiO2 nanostructures (nanoparticle, nanotube, and nanosheet) and their photocatalytic activity. The Journal of Physical Chemistry C 2014, 118 (24), 12727-12733.
96. Wenderich, K.; Mul, G., Methods, Mechanism, and Applications of Photodeposition in Photocatalysis: A Review. Chem Rev 2016, 116 (23), 14587-14619.
97. Hou, L.; Zhang, M.; Guan, Z.; Li, Q.; Yang, J., Effect of platinum dispersion on photocatalytic performance of Pt-TiO 2. Journal of Nanoparticle Research 2018, 20 (3), 60.
98. Ramond, T. M.; Davico, G. E.; Hellberg, F.; Svedberg, F.; Salén, P.; Söderqvist, P.; Lineberger, W. C., Photoelectron spectroscopy of nickel, palladium, and platinum oxide anions. Journal of Molecular Spectroscopy 2002, 216 (1), 1-14.
99. Al-Azri, Z. H.; Chen, W.-T.; Chan, A.; Jovic, V.; Ina, T.; Idriss, H.; Waterhouse, G. I., The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M= Pd, Pt, Au) in different alcohol–water mixtures. Journal of Catalysis 2015, 329, 355-367.
100. Chung, D. Y.; Kim, H.-i.; Chung, Y.-H.; Lee, M. J.; Yoo, S. J.; Bokare, A. D.; Choi, W.; Sung, Y.-E., Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell. Scientific reports 2014, 4, 7450.
101. Forzatti, P.; Lietti, L., Catalyst deactivation. Catalysis today 1999, 52 (2-3), 165-181.