研究生: |
李鴻志 Li, Hung-Chih |
---|---|
論文名稱: |
使用含鐵碳管快速過濾亞甲基藍 Rapid removal of methylene blue by Fe-filled CNTs |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
許景棟
李亭慧 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 含鐵奈米碳管 、亞甲基藍吸附 、磁滯曲線 、拉曼光譜 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以含鐵奈米碳管做為快速過濾亞甲基藍之載體。經由化學氣相沈積法合成之含鐵碳管吸附汙染物質之後,利用磁鐵將含鐵碳管從溶液中快速分離,減少過濾時間。XRD,SEM和TEM分析顯示碳管內α-鐵為主要結構而雪明碳鐵、三氧化二鐵為次要結構。超導量子干涉儀證明含鐵碳管具鐵磁性,其飽和磁化量高達0.85emu。UV光譜儀所得亞甲藍液的濃度變化證實了含鐵碳管能夠成為有機物吸附之載體。經由拉曼光譜儀證實六連環之缺陷也是吸付機制之一。
Carbon nanotubes (CNTs), due to surface ring currents and high specific surface area, are often used as absorbing materials and energy storage devices. This thesis focuses on use of Fe-filled CNTs as adsorbents for simultaneous filtering of methylene blue in solution. Fe-filled CNTs are made by pyrolysis of ferrocene and core structure, as revealed by XRD, SEM and TEM, is dominated by α-Fe, along with Fe3C and Fe2O3 as minority. SQUID indicate that Fe-filled CNTs are of ferromagnetic and saturation magnetization reaches a value as high as 0.85emu. UV-Vis spectrometric data confirm reduced concentration of methylene blue by Fe-filled CNTs and the adsorption mechanism resulting from the defects of hexagonal carbon network through Raman spectrometer.
參考文獻
[1] Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Bioresource Technology, 101 (2010) 3040-3046.
[2] Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, D. Wu, Carbon, 41 (2003) 1057-1062.
[3] B. Pan, B. Xing, Environmental Science & Technology, 42 (2008) 9005-9013.
[4] M. van der Zande, R. Junker, X.F. Walboomers, J.A. Jansen, Tissue Eng. Part B-Rev., 17 (2011) 57-69.
[5] A. Winkler, T. Muhl, S. Menzel, R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt, B. Buchner, Journal of Applied Physics, 99 (2006) 104905-104905.
[6] N.C. Toledo, M.R.R. de Planque, S.A. Contera, N. Grobert, J.F. Ryan, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Brief Commun. Rev. Pap., 46 (2007) 2799-2805.
[7] S. Iijima, Nature, 354 (1991) 56-58.
[8] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature, 382 (1996) 54-56.
[9] M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, J.G. Santiesteban, Applied Physics Letters, 62 (1993) 202-204.
[10] M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Carbon, 33 (1995) 873-881.
[11] T. Henning, F. Salama, Science, 282 (1998) 2204-2210.
[12] V.H. Crespi, Physical Review B, 58 (1998) 12671-12671.
[13] A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Mühl, R. Huhle, I. Mönch, D. Elefant, C.M. Schneider, Diamond and Related Materials, 12 (2003) 790-793.
[14] R.Q. Long, R.T. Yang, Journal of the American Chemical Society, 123 (2001) 2058-2059.
[15] C.-H. Wu, Journal of Hazardous Materials, 144 (2007) 93-100.
[16] S. Qu, F. Huang, S. Yu, G. Chen, J. Kong, Journal of Hazardous Materials, 160 (2008) 643-647.
[17]華中師範大學等編, 分析化學(上), 北京, 高等教育出版社.2005: 277–284.
[18] R. Sen, A. Govindaraj, C.N.R. Rao, Chemical Physics Letters, 267 (1997) 276-280.
[19] M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, Nature, 433 (2005) 476-476.