簡易檢索 / 詳目顯示

研究生: 龔建緯
Kung, Chien Wei
論文名稱: 透過雙質量塊振動系統增加三軸共振式磁力計之磁場感測靈敏度
Sensitivity Improvement of a Resonant 3-Axis Magnetometer Using Dual Mass Vibrating System
指導教授: 方維倫
Fang, Weileun
口試委員: 陳榮順
Rong-Shun Chen
謝哲偉
Jerwei Hsieh
羅炯成
Chiungcheng Lo
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 微機電系統磁力計勞倫茲力雙質量塊振動系統
外文關鍵詞: MEMS, Magnetometer, Lorentz force, Dual mass vibrating system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中提出了透過雙質量塊的振動系統來設計與實現微機電共振式磁力計,用以提高共振式磁力計之磁場感測靈敏度,相較於傳統以單一質量塊系統作為基本架構的共振式磁力計,雙質量塊系統的設計可以增加系統的動態響應進而增加磁力計的感測靈敏度。透過設計、模擬以及半導體製程實現元件,用以驗證雙質量塊振動系統的效能,本文中所設計的元件透過SOI晶片( Silicon-on-insulation wafer )實現使其製程相對簡單,本篇所設計的雙質量塊振動系統之共振式雙軸磁力計對比於單質量塊振動系統,在感測同平面方向磁場以及出平面方向磁場分別有61%和98%的增益,在磁場解析度方面,同平面方向磁場和出平面方向磁場解析度也都分別增加了3.36倍以及2.91倍。


    This study designs and implements the approach to improve the performance of resonant magnetometer using the dual mass vibrating system. As compare with the existing single mass vibrating system, the presented dual mass design could increase the dynamic response and further improve the sensing signal of the magnetometer. In application, the present design has been implemented on the Silicon-on-insulation (SOI) wafer with a relatively simple manufacturing process. The measurements indicate: the sensitivity improvements of the present dual mass design are respectively 61% for in-plane magnetic field and 98% for out-of-plane magnetic field. On the other hand, the resolution improvements of the present dual mass design are respectively 336% for in-plane magnetic field and 291% for out-of-plane magnetic field.

    目錄 iii 圖目錄 v 表目錄 xi 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 7 1-2-1 感測機制比較 7 1-2-2 電容感測式 11 1-2-3 結論 14 1-3 研究動機 15 第二章 元件設計與理論分析 29 2-1 感測增益流程 29 2-2 結構設計及感測原理 30 2-3 理論與感測性能分析 32 2-3-1 勞倫茲力理論分析 32 2-3-2 元件動態分析 33 2-3-3 運動電流分析 35 2-3-4 感測電路分析 37 2-3-5 雜訊分析 40 2-3-6 參數設計 41 2-4 性能模擬 42 第三章 製程與結果 55 3-1 元件製程流程 55 3-2 製程結果 57 第四章 元件量測結果 68 4-1 靜態量測 68 4-2 動態量測 70 4-3 性能量測 71 4-3-1 感測電路量測 71 4-3-2 性能量測架設 72 4-3-3 性能量測結果 73 第五章 結論及未來工作 90 5-1 結論 90 5-2 未來工作 94 參考文獻 100

    [1] P. Ripka(2001),Magnetic sensors and magnetometers, Artech House.
    [2] J. Lenz and A.S. Edelstein, “Magnetic sensors and their applications,” IEEE Sensors Journal, VOL. 6, pp.631-649, 2006.
    [3] E.H. Hall, “On a New Action of the Magnet on Electric Currents,” American Joirnal of Mathematics, VOL. 2, pp.287, 1879.
    [4] V. Mosser, S. Contreras, S. Aboulhouda, Ph. Lorenzini, F. Kobbi, J.L. Robert and K. Zekentes, “High sensitivity Hall sensors with low thermal drift using AlGaAs/InGaAs/GaAs heterostructures,” Sens. And Actuators A, VOL. 43, pp.135-140, 1994.
    [5] M. Epstein, R.B. Schulz, “Magnetic-field pickup for low-frequency radio-interference measuring sets,” Institute of Radio Engineers Transactions on Electron Devices, VOL. 8, pp.70-77, 1961.
    [6] http://www.asahi-kasei.co.jp/akm/en/product/ak8975b/ak8975b.html
    [7] http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00213470.pdf
    [8] D.J. Mapps, “Magnetoresistive sensors,” Sens. And Actuators A, VOL. 59, pp. 9-19, 1997.
    [9] M.N. Baibich, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett., VOL. 61, pp.2472-2475, 1988.
    [10] G. Binasch, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B, VOL. 39, pp4828-4830, 1989.
    [11] R.S. Popovic, P.M. Drljaca, C. Schott, “Bridging the gap between AMR, GMR, and Hall magnetic sensors,” Microelectronics, 2002, VOL. 1, pp.55-58, 2002.
    [12] P. Ripka , “New directions in fluxgate sensors,” Journal of Magnetism and Magnetic Materials, VOL. 215-216, pp.735-739, 2000.
    [13] R. Gottfded-Gotffried , W. Budde, R. Jahne, H. Kuck, B. Sauer, S. Ulbricht, U. Wende, “A miniaturized magnetic-field sensor system consisting of a planar fluxgate sensor and a CMOS readout circuitry,” Sens. And Actuators A ,VOL.54, pp.443-447,1996.
    [14] M. Schneider, S . Kawahito, Y. Tadokoro, and H. Baltes, “High Sensitivity CMOS MicroFluxgate Sensor, ” Electron Devices Meeting, pp.907-910, 1997
    [15] L. Chiesi, P. Kejik, B. janossy, R.S. Popovic, “CMOS planar 2D micro-fluxgate sensor, ” Sens. And Actuators A,VOL.84, pp. 174-180, 2000.
    [16] Hae-Seok Park, Jun-Sik Hwang, Won-Youl Choi, Dong-Sik Shim, Kyoung-Won Na, Sang-On Choi, “Development of micro-fluxgate sensors with electroplated magnetic cores for electronic compass,” Sens. And Actuators A, VOL. 114, pp.224-229, 2004.
    [17] http://www.yole.fr/
    [18] V. Rochus, R. Jansen, H. A. C. Tilmans, X. Rottenberg, S. Ranvier, H. Lamy, C. Chen, P. Rochus, “Poly-SiGe-based MEMS Xylophone Bar Magnetometer”, Sensors 2012, Taipei, pp.1-4, 2012
    [19] C.-I. Chang, M.-H. Tsai, Y.-C. Liu, C.-M. Sun, and W. Fang, “Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces,” MEMS 2013, Taipei , pp.193-196, 2013
    [20] C.-W. Cheng, K.-C. Liang, C.-H. Chu, D. A. Horsley, and W. Fang, “Single chip process for sensors implementation, integration, and condition monitoring,” Transducers 2013, Barcelona, pp.730-733, 2013
    [21] J. Gaspar, H. Li, P.P. Freitas, V. Chu, J.P. Conde, “Integrated magnetic sensing of electrostatically actuated thin-film microbridges,” J. Microelectromech. Syst., VOL. 5, pp.550-556, 2003.
    [22] F. Keplinger, S. Kvasnica, A Jachimowicz, F. Kohl, J. Steurer, H Hauser, “Magnetic field sensor with optical readout,” Sens. And Actuators A, VOL. 110, pp. 12-118, 2004.
    [23] Beverley Eyre, Kristofer S. J. Pister, and William Kaiser, “Resonant Mechanical Magnetic Sensor in Standard CMOS,” Electron Device Letters, VOL. 19, pp.496-498, 1998
    [24] A. L. Herrera-May, P. J. Garc´ıa-Ram´ırez, L. A. Aguilera-Cort´es, J. Mart´ınez-Castillo, A. Sauceda-Carvajal, L. Garc´ıa-Gonz´alez and E Figueras-Costa, “A resonant magnetic field microsensor with high quality factor at atmospheric pressure,” J. Micromech. Microeng., VOL. 19, 2009
    [25] R. Sunier, T. Vancura, Y. Li, K. Kay-Uwe, H. Baltes, O. Brand, “Resonant magnetic field sensor with frequency output,” J. Microelectromech. Syst., 15, pp. 1098–1107, 2006.
    [26] Zs. Kadar, A. Bossche, P.M. Sarro, J.R. Mollinger, “Magnetic-field measurement using an integrated resonant magnetic-field sensor,” Sens. And Actuators A, VOL. 70, pp. 225–232, 1998.
    [27] B. Bahreyni, C. Shafai, “A resonant micromachined magnetic field sensor,” IEEE Sensors Journal, VOL. 7, pp.1326-1334, 2007.
    [28] H. Emmerich, M. Schofthaler, “Magnetic field measurements with a novel surface micromachined magnetic-field sensor,” IEEE Transactions on Electron Devices, VOL. 47, pp.972-977, 2000.
    [29] Jukka Kyyn¨ar¨ainen, Jaakko Saarilahti, Hannu Kattelus, Anu K¨arkk¨ainen, Tor Meinander, Aarne Oja, Panu Pekko, Heikki Sepp¨a, Mika Suhonen, Heikki Kuisma, Sami Ruotsalainen, Markku Tilli, “A 3D micromechanical compass,” Sens. And Actuators A, VOL. 142, pp. 561-568, 2008
    [30] Mo Li, Vashwar T. Rouf, Matthew J. Thompson, and David A. Horsley, “Three-Axis Lorentz-Force Magnetic Sensor for Electronic Compass Applications,” J. Microelectromech. Syst., VOL. 21, pp.1002-1010, 2012
    [31] R. Ghodssi and P. Lin, MEMS Materials and Processes Handbook: Springer, 2011., pp.1101-1102
    [32] Vashwar T. Rouf, Mo Li and David A. Horsley, “Area-Efficient Three Axis MEMS Lorentz Force Magnetometer,” IEEE Sensors Journal, VOL. 13, pp.4474-4481, 2013
    [33] Giacomo Langfelder, Cesare Buffa, Attilio Frangi, Alessandro Tocchio, Ernesto Lasalandra, and Antonio Longoni, “Z-Axis Magnetometers for MEMS Inertial Measurement Units Using an Industrial Process,” IEEE Transactions on Industrial Electronics, VOL. 60, pp.3983-3990, 2013
    [34] Mitsuhiro Yoda. 2006. Actuator. U.S. Patent No. 7095156 B2.
    [35] C.P. Hsu, M.C. Yip, W. Fang, “Implementation of a gap-closing differential capacitive sensing Z-axis accelerometer on an SOI wafer,” J. Micromech. Microeng., VOL. 19, 2009.
    [36] http://en.wikipedia.org/wiki/Vibration
    [37] A.L. Herrera-May, L.A. Aguilera-Cortes, P.J. Garcia-Ramirez, E. Manjarrez, “Resonant Magnetic field sensor based on MEMS technology,” Sensors, VOL. 9, pp.7785-7813, 2009.
    [38] K.E.Petersen, “Silicon as a mechanical material,” Proceeding of the IEEE, VOL. 70, pp.420-457, 1982.
    [39] http://en.wikipedia.org/wiki/Lorentz_force
    [40] William C. Tang, Tu-Cuong H. Nguyen, Michael W. Judy, Roger T. Howe, “Electrostatic-comb drive of lateral polysilicon resonators,” Sens. And Actuators A, VOL. 21, pp.328-331, 1990
    [41] Wen-Chien Chen, Weileun Fang and Sheng-Shian Li, “A generalized CMOS-MEMS platform for micromechanical resonators monolithically integrated with circuits,” J. Micromech. Microeng., VOL. 21, 2011
    [42] Burak Eminoglu, Said Emre Alper, and Tayfun Akin, “A new baseband equivalent model for sense mode dynamics and its effects on force-feedback controller design for MEMS gyroscopes,” Sensors 2011, Limerick, pp. 157-160, 2011
    [43] Kun Wang, Ark-Chew Wong, Nguyen, C.T.-C. , “VHF free-free beam high-Q micromechanical resonators”, J. Microelectromech. Syst., VOL. 9, pp. 347-360, 2000
    [44] http://en.wikipedia.org/wiki/Capacitor
    [45] Bannon, F.D, Clark, J.R, Nguyen, C.T.-C., “High-Q HF microelectromechanical filters”, Journal of Solid-State Circuits, IEEE, VOL. 35, pp.512-526, 2000
    [46] Erik Margan, “Transimpedance Amplifier Analysis”
    [47] Thomas B. Gabrielson, “Mechanical-thermal noise in micromachined Acoustic and Vibration sensors”, IEEE Transactions on Electron Devices, VOL. 40, pp. 903-909, 1993
    [48] http://www.ti.com/lit/ds/symlink/opa2227.pdf
    [49] http://www.ti.com/lit/ds/symlink/ina129.pdf
    [50] Alexander A Trusov, Adam R Schofield and Andrei M Shkel, “A substrate energy dissipation mechanism in in-phase and anti-phase micromachined z-axis vibratory gyroscopes,” J. Micromech. Microeng., VOL.18, 2008
    [51] Xu Mao, Zhenchuan Yang, Zhihong Li, Guizhen Yan, “The method of prevent footing effect in making SOI micro-mechanical structure,” NEMS 2009, Shenzhen, pp.506-509, 2009
    [52] Matthew Wasilik , Albert P. Pisano, “Low-frequency process for silicon-on-insulator deep reactive ion etching,” Proc. SPIE, VOL. 4592, pp.462-472, 2001
    [53] http://www.ni.com/white-paper/11640/zht/
    [54] http://en.wikipedia.org/wiki/Helmholtz_coil
    [55] M.J. Thompson, M. Li, and D.A. Horsley, “Low power 3-axis Lorentz force navigation magnetometer” MEMS 2011, Mexico, pp.593-596, 2011
    [56] Minhang Bao, Heng Yang, “Squeeze film air damping in MEMS”, Sens. And Actuators A, VOL.136, pp.3-27, 2007
    [57] M. Andrews, I. Harm and G. Turner, “A comparison of squeeze-film theory with measurements on a microstructure”, Sens. And Actuators A, VOL.36, pp.79-87, 1993
    [58] Mo Li, Eldwin J. Ng, Chae H. Ahn, Yushi Yang, Thomas W. Kenny and David A. Horsley, “Single-structure 3-axis lorentz force magnetometer with sub-30 nT/√HZ resolution” MEMS 2014, San Francisco, pp.80-83, 2014
    [59] http://en.wikipedia.org/wiki/Coriolis_effect

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE