簡易檢索 / 詳目顯示

研究生: 蕭琮介
Hsiao, Tsung-Chieh
論文名稱: 增強型p型氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體之研製
Fabrication and Characterization of Enhancement-mode p-GaN/AlGaN/GaN HEMTs
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 謝光前
Hsieh, Kuang-Chien
黃宗義
Huang, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 氮化鎵氮化鋁鎵/氮化鎵P型氮化鎵增強型
外文關鍵詞: GaN, AlGaN/GaN, p-GaN, enhancement-mode
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文中,我們選用矽基板上磊晶p型氮化鎵/氮化鋁鎵/氮化鎵試片製作增強型高電子遷移率電晶體,主要於閘極區域利用高濃度的p型氮化鎵與底層氮化鋁鎵/氮化鎵形成PN接面的特性,空乏二維電子氣通道使通道關閉,藉此實現增強型元件。當元件通道長度2µm,閘極至源極長度5µm,閘極至汲極長度7µm時,量得臨界電壓值(Vth)為0.3V,轉移電導值為45mS/mm,導通阻抗值為3.43mΩ‧cm^2,以及不錯的電流開關比(Ion/off ≈10^8)。
    在元件關閉崩潰特性方面,利用磊晶較厚的緩衝層(4.2µm), 減少基板漏電路徑,同時提升垂直方向承受電壓能力。在基板為浮動電位並且浸泡在冷卻液的條件下,量測結果顯示,閘極至汲極長度為60µm元件,獲得最高崩潰電壓值為2760V。而閘極至汲極長度為20µm元件,則有最佳評比效能BFOM值604MW/cm^2,表示崩潰電壓與導通電阻達到最佳的平衡。最後,我們觀察到汲極電流呈現不穩定的現象,有別於表面與內部缺陷所導致的電流衰減,故嘗試分析並加以解釋可能成因。


    In this thesis, enhancement-mode p-GaN/AlGaN/GaN HEMTs on a silicon substrate were fabricated. The p-type doped GaN and AlGaN/GaN barrier junction can be considered as a PN junction, so using p-type GaN as gate is able to deplete the 2DEG channel at a Vg=0V, thus yielding a normally-off device.
    For the on-state characteristics, the threshold voltage (Vth) and the maximum transconductance (Gm,max) for the device with 2μm Lch, 5μm Lgs and 7μm Lgd is 0.3V and 45mS/mm. And the on-resistance and on/off current ratio is 3.43mΩ‧cm^2 and 10^8 for the same device.
    For the reverse breakdown characteristics, we use a thick buffer layer to reduce substrate leakage current and raise the capability of vertical breakdown voltage. The highest breakdown voltage for the device with Lgd=60μm is 2760V, and the best BFOM is 604 MW/cm^2 for the device with Lgd=20μm. A drain current instability that is different from the current collapse due to surface and bulk traps is observed and explained.

    中文摘要........................I Abstract.......................II 致謝............................III 目錄............................V 圖目錄..........................VII 表目錄..........................IX 第一章 序論......................1 1.1前言:........................1 1.2文獻回顧與研究動機.............2 1.3研究方向簡介與論文架構..........8 1.3.1 研究方向簡介................8 1.3.2論文架構....................8 第二章 元件介紹及實驗設計...........13 2.1 氮化鋁鎵/氮化鎵材料介紹.........13 2.1.1 自發性極化效應...............13 2.1.2 壓電性極化效應...............14 2.2 基板的選擇.....................15 2.3 場平板結構(field plate)........15 2.4 元件隔離方式(isolation)........16 2.5 實驗設計.......................17 2.5.1 試片種類.....................17 2.5.2元件光罩設計...................18 第三章 光罩設計與元件製程.............22 3.1 增強型p-GaN/AlGaN/GaN HEMT設計流程..22 3.2源極/汲極區域之p型氮化鎵蝕刻...........23 3.3 歐姆接觸與金屬對準記號..............26 3.4 元件隔離區域.......................26 3.5 閘極金屬製作.......................27 3.6 p型氮化鎵自我對準蝕刻...............28 3.7 表面鈍化層.........................28 3.8 場平板和襯墊金屬....................29 第四章 元件量測結果分析.................33 4.1電壓-電流量測分析....................33 4.11 TLM測試元件量測....................33 4.12不同閘極結構的電壓-電流特性...........35 4.13正向與反向漏電流量測分析..............39 4.2 升溫特性分析.........................40 4.3 崩潰特性分析.........................42 4.31元件崩潰量測.........................42 4.32元件崩潰電流分析......................44 4.4 閘極下方電位浮動特性分析...............45 4.41 空乏型蕭基特閘極.....................45 4.42 增強型p型氮化鎵閘極..................50 4.42-1 閘極影響..........................51 4.42-2 汲極影響..........................54 第五章 結論與未來工作......................60 參考文獻.................................61

    [1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, Aug. 1994.
    [2]M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1−xN heterojunctions, ” Appl. Phys. Lett., vol.60, no. 24, pp. 3027-3029, Mar. 1992.
    [3]M. Asif Khan, M.S. Shur and Q. Chen, “High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor, ” IEE Electronics Lett., vol. 31, no. 24, pp. 2130-2131, Nov. 1995.
    [4]Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors, ” App.. Physics Lett., vol. 69, no. 10, pp. 1438-1440, Sep. 1996.
    [5]S. Yoshida , H. Ishii, J. Li, D. Wang and Masakazu, “A high-power AlGaN/GaN heterojunction field-effect transistor,” Solid-State Electronics, vol. 47, no. 3, pp. 589-592, Mar. 2003.
    [6]S. Karmalkar and U. K. Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE Trans. Electron Devices, vol. 48, no. 8, pp.1515-1521, Agu. 2001.
    [7]H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol 25, no 4, pp 161-163, April 2004.
    [8]Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 713-715, Sep. 2006.
    [9]S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol.50, no. 6, pp. 1057-1061, Jun. 2006.
    [10]Y. Cai, Y. G. Zhou, and K. M. Lau, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Electron Device Lett., vol. 53, no. 9, pp. 2207-2215, Sep. 2006.
    [11]X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska and M.S. Shur, “Enhancement mode AIGaN/GaN HFET with selectively grown pn junction gate,” IEEE Electron Lett., vol. 36, no. 8, pp. 753-754, Apr. 2000.
    [12]N. Tsuyukuchi, K. Nagamatsu, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano and I. Akasaki, “Low-Leakage-Current Enhancement Mode AlGaN/GaN Heterostructure Field-Effect Transistor Using p-Type Gate Contact,” Jpn. J. Appl. Phys., vol. 45, no. 11, pp. 319-321, Mar. 2006.
    [13]T. Sugiyama, H. Amano, D. Iida, M. Iwaya, S. Kamiyama, and I. Akasaki, “High-Temperature Operation of Normally Off-Mode AlGaN/GaN Heterostructure Field-Effect Transistors with p-GaN Gate,” Jpn. J. Appl. Phys., vol. 50, no. 1, pp. 01AD03 01-03, Jan. 2011.
    [14]I. Hwang, H. Choi, J. W. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J. Oh, J. Y. Kim, J. K. Shin, Y. Park, U. I. Chung, I. K. Yoo, and K. Kim, “1.6kV, 2.9 mΩ.cm2 Normally-off p-GaN HEMT Device,” Proc. ISPSD 2012, pp. 41-44, Jun. 2012.
    [15]I. Hwang, J. Kim, H. S. Choi, H. Choi, J. W. Lee, K. Y. Kim, J. B. Park, J. C. Lee, J. B. Ha, J. Oh, J. K. Shin, and U. I. Chung, “p-GaN Gate HEMTsWith Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 202-204, Feb. 2013.
    [16]T. Katsuno, M. Kanechika, K. Itoh, K. Nishikawa, T. Uesugi, and T. Kachi, “Improvement of Current Collapse by Surface Treatment and Passivation Layer in p-GaN Gate GaN High-Electron-Mobility Transistors,” Jpn. J. Appl. Phys., vol. 52, pp. 04CF08 01-05, Mar. 2013.
    [17]W.B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” IEE Electronics Lett., vol. 41, no. 7, pp. 449-450, Mar. 2005.
    [18]T. Oka, and T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett, vol. 29, no. 7, pp. 668-670, Jul. 2008.
    [19]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, Mar. 2001.
    [20]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, R. Dimitrov, L. Wittmer, and M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6 , pp. 3222-3233, Mar. 1999.
    [21]R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett, vol. 19, no. 3, pp. 89-91, Mar. 1998.
    [22]J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, “Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 28, no. 6 , pp. 476-478, Jun. 2007.
    [23]M. Kuraguchi, Y. Takada, T. Suzuki, M. Hirose, K. Tsuda , W. Saito, Y. Saito, and I. Omura, “Normally-off GaN-MISFET with well-controlled threshold voltage,” Phys. Stat. Sol. (A), vol. 204, no. 6, pp. 2010-2013, Jun. 2007.
    [24]Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393-3399, Dec. 2007.
    [25]O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, “Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN Buffer,” Proc. ISPSD 2010, pp. 347-350, Jun. 2010.
    [26]O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Wurfl, “Normally-off High-Voltage p-GaN Gate GaN HFET with Carbon-Doped Buffer,” Proc. ISPSD 2011, pp. 239-242, May. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE