研究生: |
蕭琮介 Hsiao, Tsung-Chieh |
---|---|
論文名稱: |
增強型p型氮化鎵/氮化鋁鎵/氮化鎵高電子遷移率電晶體之研製 Fabrication and Characterization of Enhancement-mode p-GaN/AlGaN/GaN HEMTs |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
謝光前
Hsieh, Kuang-Chien 黃宗義 Huang, Tsung-Yi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2013 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 氮化鎵 、氮化鋁鎵/氮化鎵 、P型氮化鎵 、增強型 |
外文關鍵詞: | GaN, AlGaN/GaN, p-GaN, enhancement-mode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們選用矽基板上磊晶p型氮化鎵/氮化鋁鎵/氮化鎵試片製作增強型高電子遷移率電晶體,主要於閘極區域利用高濃度的p型氮化鎵與底層氮化鋁鎵/氮化鎵形成PN接面的特性,空乏二維電子氣通道使通道關閉,藉此實現增強型元件。當元件通道長度2µm,閘極至源極長度5µm,閘極至汲極長度7µm時,量得臨界電壓值(Vth)為0.3V,轉移電導值為45mS/mm,導通阻抗值為3.43mΩ‧cm^2,以及不錯的電流開關比(Ion/off ≈10^8)。
在元件關閉崩潰特性方面,利用磊晶較厚的緩衝層(4.2µm), 減少基板漏電路徑,同時提升垂直方向承受電壓能力。在基板為浮動電位並且浸泡在冷卻液的條件下,量測結果顯示,閘極至汲極長度為60µm元件,獲得最高崩潰電壓值為2760V。而閘極至汲極長度為20µm元件,則有最佳評比效能BFOM值604MW/cm^2,表示崩潰電壓與導通電阻達到最佳的平衡。最後,我們觀察到汲極電流呈現不穩定的現象,有別於表面與內部缺陷所導致的電流衰減,故嘗試分析並加以解釋可能成因。
In this thesis, enhancement-mode p-GaN/AlGaN/GaN HEMTs on a silicon substrate were fabricated. The p-type doped GaN and AlGaN/GaN barrier junction can be considered as a PN junction, so using p-type GaN as gate is able to deplete the 2DEG channel at a Vg=0V, thus yielding a normally-off device.
For the on-state characteristics, the threshold voltage (Vth) and the maximum transconductance (Gm,max) for the device with 2μm Lch, 5μm Lgs and 7μm Lgd is 0.3V and 45mS/mm. And the on-resistance and on/off current ratio is 3.43mΩ‧cm^2 and 10^8 for the same device.
For the reverse breakdown characteristics, we use a thick buffer layer to reduce substrate leakage current and raise the capability of vertical breakdown voltage. The highest breakdown voltage for the device with Lgd=60μm is 2760V, and the best BFOM is 604 MW/cm^2 for the device with Lgd=20μm. A drain current instability that is different from the current collapse due to surface and bulk traps is observed and explained.
[1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481-1483, Aug. 1994.
[2]M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, and J. Carter, “Observation of a twodimensional electron gas in low pressure metalorganic chemical vapor deposited GaNAlxGa1−xN heterojunctions, ” Appl. Phys. Lett., vol.60, no. 24, pp. 3027-3029, Mar. 1992.
[3]M. Asif Khan, M.S. Shur and Q. Chen, “High transconductance AIGaN/GaN optoelectronic heterostructure field effect transistor, ” IEE Electronics Lett., vol. 31, no. 24, pp. 2130-2131, Nov. 1995.
[4]Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors, ” App.. Physics Lett., vol. 69, no. 10, pp. 1438-1440, Sep. 1996.
[5]S. Yoshida , H. Ishii, J. Li, D. Wang and Masakazu, “A high-power AlGaN/GaN heterojunction field-effect transistor,” Solid-State Electronics, vol. 47, no. 3, pp. 589-592, Mar. 2003.
[6]S. Karmalkar and U. K. Mishra, “Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using a Field Plate,” IEEE Trans. Electron Devices, vol. 48, no. 8, pp.1515-1521, Agu. 2001.
[7]H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol 25, no 4, pp 161-163, April 2004.
[8]Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra “High Breakdown Voltage Achieved on AlGaN/GaN HEMTs With Integrated Slant Field Plates,” IEEE Electron Device Lett., vol. 27, no. 9, pp. 713-715, Sep. 2006.
[9]S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-State Electronics, vol.50, no. 6, pp. 1057-1061, Jun. 2006.
[10]Y. Cai, Y. G. Zhou, and K. M. Lau, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Electron Device Lett., vol. 53, no. 9, pp. 2207-2215, Sep. 2006.
[11]X. Hu, G. Simin, J. Yang, M. Asif Khan, R. Gaska and M.S. Shur, “Enhancement mode AIGaN/GaN HFET with selectively grown pn junction gate,” IEEE Electron Lett., vol. 36, no. 8, pp. 753-754, Apr. 2000.
[12]N. Tsuyukuchi, K. Nagamatsu, Y. Hirose, M. Iwaya, S. Kamiyama, H. Amano and I. Akasaki, “Low-Leakage-Current Enhancement Mode AlGaN/GaN Heterostructure Field-Effect Transistor Using p-Type Gate Contact,” Jpn. J. Appl. Phys., vol. 45, no. 11, pp. 319-321, Mar. 2006.
[13]T. Sugiyama, H. Amano, D. Iida, M. Iwaya, S. Kamiyama, and I. Akasaki, “High-Temperature Operation of Normally Off-Mode AlGaN/GaN Heterostructure Field-Effect Transistors with p-GaN Gate,” Jpn. J. Appl. Phys., vol. 50, no. 1, pp. 01AD03 01-03, Jan. 2011.
[14]I. Hwang, H. Choi, J. W. Lee, H. S. Choi, J. Kim, J. Ha, C. Y. Um, S. K. Hwang, J. Oh, J. Y. Kim, J. K. Shin, Y. Park, U. I. Chung, I. K. Yoo, and K. Kim, “1.6kV, 2.9 mΩ.cm2 Normally-off p-GaN HEMT Device,” Proc. ISPSD 2012, pp. 41-44, Jun. 2012.
[15]I. Hwang, J. Kim, H. S. Choi, H. Choi, J. W. Lee, K. Y. Kim, J. B. Park, J. C. Lee, J. B. Ha, J. Oh, J. K. Shin, and U. I. Chung, “p-GaN Gate HEMTsWith Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 202-204, Feb. 2013.
[16]T. Katsuno, M. Kanechika, K. Itoh, K. Nishikawa, T. Uesugi, and T. Kachi, “Improvement of Current Collapse by Surface Treatment and Passivation Layer in p-GaN Gate GaN High-Electron-Mobility Transistors,” Jpn. J. Appl. Phys., vol. 52, pp. 04CF08 01-05, Mar. 2013.
[17]W.B. Lanford, T. Tanaka, Y. Otoki and I. Adesida, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” IEE Electronics Lett., vol. 41, no. 7, pp. 449-450, Mar. 2005.
[18]T. Oka, and T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett, vol. 29, no. 7, pp. 668-670, Jul. 2008.
[19]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, Mar. 2001.
[20]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, R. Dimitrov, L. Wittmer, and M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6 , pp. 3222-3233, Mar. 1999.
[21]R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett, vol. 19, no. 3, pp. 89-91, Mar. 1998.
[22]J. Y. Shiu, J. C. Huang, V. Desmaris, C. T. Chang, C. Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, “Oxygen Ion Implantation Isolation Planar Process for AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 28, no. 6 , pp. 476-478, Jun. 2007.
[23]M. Kuraguchi, Y. Takada, T. Suzuki, M. Hirose, K. Tsuda , W. Saito, Y. Saito, and I. Omura, “Normally-off GaN-MISFET with well-controlled threshold voltage,” Phys. Stat. Sol. (A), vol. 204, no. 6, pp. 2010-2013, Jun. 2007.
[24]Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T. Ueda, T. Tanaka, and D. Ueda, “Gate injection transistor (GIT)—A normally-off AlGaN/GaN power transistor using conductivity modulation,” IEEE Trans. Electron Devices, vol. 54, no. 12, pp. 3393-3399, Dec. 2007.
[25]O. Hilt, A. Knauer, F. Brunner, E. Bahat-Treidel, and J. Würfl, “Normally-off AlGaN/GaN HFET with p-type GaN Gate and AlGaN Buffer,” Proc. ISPSD 2010, pp. 347-350, Jun. 2010.
[26]O. Hilt, F. Brunner, E. Cho, A. Knauer, E. Bahat-Treidel, and J. Wurfl, “Normally-off High-Voltage p-GaN Gate GaN HFET with Carbon-Doped Buffer,” Proc. ISPSD 2011, pp. 239-242, May. 2011.