研究生: |
吳亦振 Wu, Yi-Chen |
---|---|
論文名稱: |
多層次功能多樣性之分解 : 統計估計與軟體開發 Hierarchical Decomposition of Functional Diversity : Statistical Estimation and Software Development |
指導教授: |
趙蓮菊
Chao, Lien-Ju |
口試委員: |
林宜靜
Lin, Yi-Ching 江智民 Chiang, Jyh-Min 邱春火 Chiu, Chun-Huo |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 273 |
中文關鍵詞: | 生物多樣性 、功能性 、多層次 |
外文關鍵詞: | Biodiversity, Functional, Hierarchical |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全球環境的變遷和劣化與暖化效應造成前所未有的生物多樣性改變與全球對生物多樣性消失的關注。許多珍貴的大自然資源由於人類需求的劇增以驚人的速度被消耗,環境與生態系受到嚴重的破壞,對大多數的物種造成很大的威脅。為了讓地球的生態得以永續發展,生物多樣性數據與分析逐漸受到重視,量化多樣性的指標也相繼被提出,除了有考慮物種豐富度的「物種多樣性」以及考慮到演化歷程的「系統演化多樣性」指標之外,「功能多樣性」指標是透過生物特徵來衡量一地區或生態系受環境變化或干擾的適應能力,是近年來生態學中重視的研究議題。另一方面,現今多層次結構的資料越來越常見,以單一群落或多群落的指標已無法完善的分析多樣性,因此許多研究者以多群落中的 多樣性為概念,相繼提出多層次生物多樣性的架構與量化指標。
本文的研究主題接續林依靜碩士論文 ( 2018 ) 的功能多層次架構,以及結合程麒任碩士論文 ( 2018 ) 的功能多樣性指標估計, 推廣到功能多層次指標估計,同時也進一步推導區塊抽樣下出現與否資料 ( incidence data ) 的功能多層次分解架構和估計式,並透過電腦模擬的方式比較本文推廣的估計量與最大概似估計量在各項指標的表現,結果顯示本文推廣的估計量在平均偏誤和方均根誤差的表現上優於最大概似估計量。本文最後分析羅亞河無脊動物資料 ( abundance data ) 和台灣墾丁與福山動態樣區資料 ( incidence data ) 作為實際資料分析的示範,並藉由R語言與Shiny 新增和修改互動式網頁 hiDIP ( hierarchical DIversity Partitioning ) Online中Functional Diversity的估計功能和介面,讓使用者能以簡易的方式進行資料分析。
Global warming and environmental change/degradation have led to an unprecedented threat to the world’s biodiversity and widespread concern about the loss of biodiversity. Many precious natural resources have been consumed at an alarming rate due to the rapid increase in human activities/disturbances. The environment and ecosystem have been severely damaged, posing a great threat to most rare species. In order to achieve the sustainable development of the earth system, researchers are paying more attention to the issue of biodiversity data and relevant statistical analysis. An enormous number of diversity measures have been proposed to quantify diversity. In addition to the species/taxonomic diversity and phylogenetic diversity, functional diversity takes the difference between species traits into account and measure the capability of a region or ecosystem to adapt to environmental changes or disturbances. Functional diversity is a rapidly growing research topic in ecology recently. In addition to the commonly used data for single/multiple communities, hierarchical structure data have become more prevalent in many functional studies. Thus, many researchers have proposed hierarchical structure and measurement via the concept of diversity decomposition ( diversity).
This thesis integrates the hierarchical functional diversity structure proposed in Yi-Ching Lin’s thesis ( 2018 ) and the functional diversity estimator proposed in Qi-Ren Cheng’s thesis ( 2018 ) and develops the framework and estimator for hierarchical functional diversity. The hierarchical functional diversity structure and estimator for the incidence data under quadrat sampling are also proposed. Simulation results are reported to show that the proposed estimators outperform the maximum likelihood estimators in terms of bias and root mean squared error (RMSE). Loire River macroinvertebrate data and woody plant data of two Taiwan dynamics plots are used for illustrating the application of the proposed hierarchical functional analysis and estimation. In addition, the Functional Diversity online application hiDIP ( hierarchical Diversity Partitioning ) which is developed with R language and Shiny package is expanded and implemented to facilitate all computation for the proposed estimators and graphics.
[1] Champely, S., & Chessel, D. (2002). Measuring biological diversity using Euclidean metrics. Environmental and Ecological Statistics, 9, 167-177.
[2] Chao, A. (1984). Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265-270.
[3] Chao, A., Chiu, C. H., & Jost, L. (2010). Phylogenetic diversity measures based on Hill numbers. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1558), 3599-3609.
[4] Chao, A., & Jost. L. (2012). Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology, 93, 2533-2547.
[5] Chao, A., Chiu, C. H., & Jost, L. (2014). Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity/differentiation measures through Hill numbers. Annual Reviews of Ecology, Evolution, and Systematics, 45, 297-324.
[6] Chao, A., & Jost, L. (2015). Estimating diversity and entropy profiles via discovery rates of new species. Methods in Ecology and Evolution, 6(8), 873-882.
[7] Chao, A., Chiu, C. H., Villéger, S., Sun, I. F., Thorn, S., Lin, Y. C., ... & Sherwin, W. B. (2019). An attribute‐diversity approach to functional diversity, functional beta diversity, and related (dis) similarity measures. Ecological Monographs, 89(2), e01343.
[8] Chiu, C. H., Jost, L., & Chao, A. (2014). Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecological Monographs, 84, 21-44.
[9] Chiu, C. H., & Chao, A. (2014). Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers. PLoS ONE, 9, e100014.
[10] Chiu, C. H., Wang, Y. T., Walther, B. A., & Chao, A. (2014). An improved nonparametric lower bound of species richness via a modified good–turing frequency formula. Biometrics, 70(3), 671-682.
[11] Crist, T. O., Veech, J. A., Gering, J. C., & Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. The American Naturalist, 162, 734-743.
[12] Crist, T. O., & Veech, J. A. (2006). Additive partitioning of rarefaction curves and species-area relationships: unifying α‐, β‐and γ‐diversity with sample size and habitat area. Ecology, 9, 923-932.
[13] Hill, M. O. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54(2), 427-432.
[14] Horn, H. S. (1966). Measurement of ‘overlap’ in comparative ecological studies. The American Naturalist, 100, 419-424.
[15] Ivol, J. M., Guinand, B., Richoux, P., & Tachet, H. (1997). Longitudinal changes in Trichoptera and Coleoptera assemblages and environmental conditions in the Loire River (France). Archiv für Hydrobiologie, 138, 525-557.
[16] Jost, L. (2007). Partioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439.
[17] Jost, L., Chao, A., & Chazdon, R. L. (2011). Compositional similarity and β (beta) diversity. Biological Diversity: frontiers in measurement and assessment, Magurran, A. E., & McGill, B. J. (eds). Oxford University Press, New York, 66-87.
[18] MacArthur, R., Recher, H., & Cody, M. (1966). On the relation between habitat selection and species diversity. The American Naturalist, 100, 319-332.
[19] Morisita, M. (1959). Measuring of interspecific association and similarity between communities. Memoirs of Faculty of Science. Kyushu University, Series E, 3, 65-80.
[20] Rao, C. R. (1982). Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24-43.
[21] Rao, C. R. (1982b). Diversity: Its measurement, decomposition, apportionment and analysis. Sankhyā: The Indian Journal of Statistics, Series A, 44, 1-22.
[22] Rao, C. R. (1984). Convexity properties of entropy functions and analysis of diversity. Inequalities in Statistics and Probability: Proceedings of the Symposium on Inequalities in Statistics and Probability, Tong, Y. L. (ed). Institute of Mathematical Statistics, Hayward, California, USA, 68-77.
[23] Ricotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479-486.
[24] Ricotta, C., & Szeidl, L. (2006). Towards a unifying approach to diversity measures: bridging the gap between the Shannon entropy and Rao's quadratic index. Theoretical Population Biology, 70, 237-243.
[25] Routledge, R. (1979). Diversity indices: which ones are admissible? Theoretical Population Biology, 76, 503-515.
[26] Walker, B., Kinzig, A., & Langridge, J. (1999). Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems, 2, 95-113.
[27] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 23, 213-251.
[28] 趙蓮菊, 邱春火, 王怡婷, 謝宗震, 馬光輝 (2013). 仰觀宇宙之大, 俯察品類之盛:如何量化生物多樣性. Journal of the Chinese Statistical Association, 51, 8-53.
[29] 羅晧均 (2018). 多層次物種多樣性分解測度:統計估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[30] 周幼敏 (2018). 多層次系統演化多樣性測度:統計估計與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[31] 林依靜 (2018). 多層次功能多樣性分解測度:一般架構與軟體開發 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文
[32] 程麒任 (2018). 生態系區塊抽樣之功能多樣性 (統計估計與軟體開發) 趙蓮菊指導 新竹市國立清華大學統計學研究所碩士論文