簡易檢索 / 詳目顯示

研究生: 卓勇廷
Yong-Ting Jhuo
論文名稱: 利用大氣RF電漿在PMMA上沉積透明硬質SiOx膜
Transparent Hard SiOx Film Deposition on PMMA by Atmospheric Pressure RF Plasma
指導教授: 陳建瑞
Jiann-Ruey Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 大氣電漿HMDSNSiOx膜化學氣相沉積
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用大氣RF電漿鍍出高硬度、透明且平整的SiOx膜在塑膠基材上,使塑膠基材硬度提升,並要求薄膜有高透光性,使其應用光學及顯示器產業上。且在大氣下進行鍍膜,製程上不需抽真空設備,製程溫度不高於PMMA的Tg點(105 ℃)。另外,本實驗將針對SiOx膜性質的影響因子,進行分析及探討,了解彼此之間的關聯性,進而鍍出硬度高、透光性佳且沉積速率快的SiOx膜。研究結果顯示,隨著所施加的電漿功率或氧氣流量增加,能使SiOx膜沉積速率變快且無機性質上升,但電漿功率或氧氣流量超過某臨界值時,會因氣相均質成核的效應明顯而產生大量粉末沉積,進而使可見光穿透率及表面平整度變差。而提升基材溫度能使碳氫基團在SiOx膜含量減少,因此薄膜的無機性質、硬度有明顯的提升,即使只從25 ℃上升到100 ℃。所沉積之SiOx膜性質如下:硬度達5H,平均可見光穿透率在90 %以上,最佳無機組成的O/Si比例在1.76、C元素在8.08 %,表面粗糙度(Ra)在2~6 nm之間。


    第一章 緒論………………………………………………………………1 1-1 前言…………………………………………………………………1 1-1.1 大氣電漿簡介……………………………………………………2 1-1.2 化學氣相沉積SiO2薄膜…………………………………………8 1-2 研究動機與目標……………………………………………………13 第二章 文獻回顧………………………………………………………15 2-1 電漿特性與原理……………………………………………………15 2-1.1 電漿基本特性……………………………………………………15 2-1.2 電漿能量分佈函數………………………………………………21 2-1.3 電漿的化學反應…………………………………………………25 2-2 大氣電漿沉積SiOx膜………………………………………………31 第三章 實驗設備與流程………………………………………………38 3-1 實驗設備…………………………………………………38 3-1.1 大氣電漿設備系統………………………………………………38 3-1.2 ESCA表面分析量測設備…………………………………………40 3-1.3 表面粗糙度量測(AFM)………………………………………43 3-1.4 掃描式電子顯微鏡(SEM)……………………………………46 3-1.5 紫外光-可見光光譜儀(UV-Vis)………………………………48 3-1.6 鉛筆式硬度計測量………………………………………………49 3-2 實驗設計……………………………………………………………50 3-2.1 實驗流程…………………………………………………………50 3-2.2 標準試片製作……………………………………………………50 3-2.3 先驅物單體準備…………………………………………………51 第四章、結果與討論……………………………………………………52 4-1 電漿功率對SiOx膜性質之影響……………………………………52 4-1.1 電漿功率對SiOx膜沉積速率與元素組成之影響………………52 4-1.2 電漿功率對 SiOx膜光穿透率與表面粗糙度之影響…………53 4-1.3 綜合分析與討論…………………………………………………58 4-2 氧氣流量對SiOx膜性質之影響……………………………………59 4-2.1 氧氣流量對SiOx膜沉積速率、元素組成及硬度之影響………59 4-2.2 氧氣流量對 SiOx膜光穿透率與表面粗糙度之影響…………61 4-2.3 綜合分析與討論…………………………………………………64 4-3 HMDSN流量對SiOx膜性質之影響…………………………………65 4-3.1 HMDSN流量對SiOx膜沉積速率、元素組成與硬度之影響……65 4-3.2 HMDSN流量對 SiOx鍵結型態之影響……………………………67 4-3.3 HMDSN流量對 SiOx膜光穿透率與表面粗糙度之影響…………72 4-3.4 綜合分析與討論…………………………………………………72 4-4 基材溫度對SiOx膜性質之影響……………………………………75 4-4.1 基材溫度對SiOx膜沉積速率、元素組成、硬度、光穿透率及表面粗糙度之影響…………………………………………………………75 4-4.2 HMDSN流量對 SiOx鍵結型態之影響……………………………77 4-4.3 綜合分析與討論…………………………………………………81 4-5 電極間距對SiOx膜性質之影響……………………………………82 4-5.1 電極間距對電漿光譜之影響……………………………………82 4-5.2 電漿功率對SiOx膜沉積速率與元素組成之影響………………86 4-5.3 電漿間距對 SiOx膜光穿透率與表面粗糙度之影響…………88 4-5.4 綜合分析與討論…………………………………………………91 第五章、結論……………………………………………………………92 Reference……………………………………………………………….94

    [1] Andreas Schutze , IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 26, NO. 6, DECEMBER 1998.
    [2] T. Yoshida, “The future of thermal plasma processing,” Materials Trans.JIM, vol. 31, no. 1, pp. 1–11, 1990.
    [3] Y. Chang, R. M. Young, and E. Pfender, “Silicon nitride synthesis in an atmospheric pressure convection-stabilized arc,” Plasma Chem. Plasma Process., vol. 9, no. 2, pp. 277–289, 1989.
    [4] J. R. Roth and Y. Ku, “Surface cleaning of metals in air with a one atmosphere uniform glow discharge plasma,” in Abstracts IEEE Int. Conf. Plasma Sci., Madison, WI, 1995, p. 251.
    [5] Pierre-Luc Girard-Lauriault, Fackson Mwale, Mihaela Iordanova, Caroline Demers, Patrick Desjardins, Michael R. Wertheimer.Plasma Processes and Polymers Volume 2, Issue 3, Date: March 31, 2005, Pages: 263-270
    [6] Yang Gao , Surface & Coatings Technology SCT-12442; No of Pages 3,2006
    [7] V. Hopfe, D. Rogler, G. Maeder, I. Dani, K. Landes, E. Theophile, M. Dzulko, C. Rohrer, C. Reichhold , Chemical Vapor Deposition Volume 11, Issue 11-12, Date: December, 2005, Pages: 510-522 .
    [8] Xiaodong Zhu, Farzaneh Arefi-Khonsari, Camille Petit-Etienne, Michael Tatoulian, Plasma Process. Polym. 2005, 2, 407–413 .
    [9] 莊達人, “VLSI製程技術”, 高立出版社, 2006年6月
    [10] G R Nowling, M Yajima, S E Babayan, M Moravej, X Yang, “Chamberless plasma deposition of glass coatings on plastic”, Plasma Sources Sci. Technol. 14 (2005) 477-484
    [11] I. Langmuir, Proc. Nat. Acad. Sci., vol. 14, p. 627, 1926.
    [12] Andreas Schutze , IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 28, NO. 1, FEBRUARY 2000
    [13] J. L. Vossen and W. Kern, Thin Film Processes II, Academic Press, Inc., Bonton (1991) 21.
    [14] Y. P. Raizer, Gas Discharge Physics. New York: Springer-Verlag, 1991.
    [15] W. Elenbaas, The High Pressure Mercury Vapor Discharge. Amsterdam,The Netherlands: North-Holland, 1951.
    [16] 清華大學材料系周麗新教授[薄膜工程]課程第四章講義.
    [17] V.M. Lelevkin, D.K. Otorbaev, and D.C. Schram, “Physics of Non- equilibrium Plasmas”, North-Holland, Amsterdam (1992)
    [18] H.V. Boening, “Plasma Science and Technology”, Cornell Univ. Press, Ithaca (1982)
    [19] M.A. Lieberman and A.J. Lichtenberg, “Principles of Plasma Discharges and Materials Processing”, Wiley, New York (1994)
    [20] 資料來源:國家奈米元件實驗室網頁。
    http://www.ndl.org.tw/ndl2006/department/nmlab/device_d5000.html
    [21] Xiaodong Zhu, Farzaneh Arefi-Khonsari, Camille Petit-Etienne, Michael Tatoulian, “Open Air Deposition of SiO2 Films by an Atmospheric Pressure Line-Shaped Plasma” Plasma Process. Polym. 2005, 2, 407–413
    [22] Xiangyu Xu, Li Li, Shouguo Wang, Lingli Zhao and Tianchun Ye, “Deposition of SiOx films with a capacitively-coupled plasma at atmospheric pressure”, Plasma Sources Sci. Technol. 16 (2007) 372–376
    [23] 資料來源:國家奈米元件實驗室網頁。
    http://www.ndl.org.tw/ndl2006/department/nmlab/device_tfsem.html
    [24] M.T. Kim, J. Lee, “Characterization of amorphous SiC:H films deposited from hexamethyldisilazane” Thin Solid Films 303 (1997) 173-179.
    [25] Jin-Kyung Choi, J. Lee, Ji-Beom Yoo, Jong-Sun Maeng ,Young-Man Kim, “Residual stress analysis of SiO2 films deposited by plasma-enhanced
    chemical vapor deposition” Surface and Coatings Technology 131 (2000) 153-157.
    [26] 羅嘉豪, 賴君義, ”四乙氧基矽烷/聚碳酸酯電漿披覆膜應用於滲透蒸發分離四氟丙醇水溶液”, 私立中原大學化學工程學系.
    [27] HOPFE Volkmar, ROGLER Daniela, MAEDER Gerrit, DANI Ines, LANDES Klaus, THEOPHILE Eckart, DZULKO Marc, ROHRER Christian, REICHHOLD Christian, “Linear extended ArcJet-CVD - A new PECVD approach for continuous wide area coating under atmospheric pressure” Chem. Vap. Deposition 2005, 11, 510-522.
    [28] M. Moravej, X. Yang, G. R. Nowling, J. P. Chang, and R. F. Hicks, “Physics of high-pressure helium and argon radio-frequency plasmas”, JOURNAL OF APPLIED PHYSICS, 15 DECEMBER 2004, VOLUME 96, NUMBER 12.
    [29] James Y. Jeong, Jaeyoung Park, Ivars Henins, Steve E. Babayan, Vincent J. Tu, Gary S. Selwyn, Guowen Ding, and Robert F. Hicks, “Reaction chemistry in the
    afterglow of an oxygen-helium, atmospheric-pressure plasma”, J. Phys. Chem.A 2000, 104, 8027-8032.
    [30] D. Hegemann, U. Vohrer, C. Oehr, R. Riedel,“Deposition of SiOx films from O2/HMDSO plasmas”, Surface and Coatings Technology 116-119 (1999) 1033-1036.
    [31] Xiaodong Zhu, Farzaneh Arefi-Khonsari, Camille Petit-Etienne, Michael Tatoulian, “Open Air Deposition of SiO2 Films by an Atmospheric Pressure Line-Shaped Plasma”, Plasma Process. Polym. 2005, 2, 407–413.
    [32] A.Sonnenfeld, T.M.Tun, L.Zajickova, K.V.Kozlov, “Deposition Process Based on Organosilicon Precursors in Dielectric Barrier Discharges at Atmospheric Pressure—A Comparison”, Plasmas and Polymers, Vol. 6, No. 4, December
    2001.
    [33] M.Goujon, T. Belmonte, G. Henrion, “OES and FTIR diagnostics of HMDSO/O2 gas mixtures for SiOx deposition assisted by RF plasma”, Surface & Coatings Technology 188–189 (2004) 756–761.
    [34] S E Babayan, J Y Jeong, A Schutze, V J Tu, Maryam Moravej, G S Selwyn and R F Hicks, “Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet”, Plasma Sources Sci. Technol. 10 (2001)
    573–578.
    [35] Katsuya Teshima, Yasushi Inoue, Hiroyuki Sugimura, Osamu Takai, “Reduction of carbon impurities in silicon oxide films prepared by rf plasma-enhanced CVD”, Thin Solid Films 390 (2001) 88-92.
    [36] 廖駿偉, 蕭祝螽, 陳蔚宗, ”OES技術於電漿製程監測之應用”, 工業材料雜誌 213期 (2004) 171-176.
    [37] J. J. Shi, D. W. Liu, and M. G. Kong, “Mitigating plasma constriction using dielectric barriers in radio-frequency atmospheric pressure glow discharges” APPLIED PHYSICS LETTERS 90, 031505 (2007).
    [38] Hiroyuki YOSHIKI, “Generation of Air Microplasma Jet and Its Application to Local Etching of Polyimide Films”, Japanese Journal of Applied Physics Vol. 45, No. 6B, 2006, pp. 5618–5623.
    [39] Tristant, P., Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison, and C. Dong, “Microwave plasma Enhanced CVD of Aluminum Oxide Films: OES Diagnostics and Influence of The RF Bias.”, Thin Solid Films 390, 51 (2001).
    [40] 清華大學材料系周麗新教授[薄膜工程]課程第一章講義.
    [41] A. Ladwig, S. Babayan, M. Smith, M. Hester, W. Highland, R. Koch,R. Hicks, “Atmospheric Plasma Deposition Of Glass Coatings On aluminum” Surface & Coatings Technology 201 (2007) 6460–6464
    [42] F Fracassi, R d'Agostino, P Favia and M van Sambeck, “Thin film deposition in glow discharges fed with hexamethyldisilazane-oxygen mixtures” Plasma Sources Sci. Technol. 2 (1993) 106-111
    [43] M. Moravej, X. Yang, G. R. Nowling, J. P. Chang, and R. F. Hicks, S. E. Babayan, “Physics of high-pressure helium and argon radio-frequency plasmas”, J. Appl. Phys., Vol. 96, No. 12, 15 December 2004
    [44] 郭志成、張所鋐, ”大氣電漿技術沉積二氧化矽薄膜之機械性質探討”, 國立臺灣大學工學院機械工程學研究所

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE