研究生: |
吳岳霖 Wu, Yue-Lin |
---|---|
論文名稱: |
研究生物反應器中大腸桿菌在不同環境條件下的生長和代謝產物 Investigating the effects of various environmental conditions on the growth and metabolic behavior of Escherichia coli in a bioreactor |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
張晃猷
Chang, Hwan-You 黃介辰 Huang, Chieh-Chen |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 生物反應器 、資料無線傳輸 、大腸桿菌 、二氧化碳濃度偵測 、氫氣濃度偵測 |
外文關鍵詞: | bioreactor, Escherichia coli, wireless data transmission, carbon dioxide concentration detection, hydrogen concentration detection |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究在於關注大腸桿菌在不同環境條件下的生長和代謝特性,利用大腸菌兼性厭氧的特性,例如有氧環境下的呼吸作用 ( cellular respiration ),厭氧環境下的發酵作用 ( fermentation ),透過使用生物反應器進行培養及排放的二氧化碳濃度偵測,不同碳源之大腸桿菌培養實驗,觀察在有氧環境下其生長情形;而在厭氧環境下,目的在於觀察其透過發酵作用能產生氫氣多寡,透過培養條件的控制,比較其產生氫氣的差異,整個實驗硬體包含Arduino的微處理器來自動化偵測實驗數據,光密度測量 OD600、攪拌、氣體量測以及資料無線傳輸等。
The objective of this research is to examine the behavior and metabolism of Escherichia coli in various environmental conditions. By leveraging the fact that Escherichia coli can function both aerobically and anaerobically, the study employs a bioreactor to cultivate the bacteria and measure carbon dioxide concentrations during discharge. This study enables the examination of the metabolic activities of Escherichia coli under various conditions, such as its ability to carry out cellular respiration when oxygen is present and fermentation when oxygen is absent. Cultivation experiments using different carbon sources were conducted to observe Escherichia coli 's growth under aerobic conditions. Under anaerobic conditions, the aim is to observe the amount of hydrogen produced through fermentation and to compare the differences in hydrogen production through controlled cultivation conditions. The experimental hardware includes an Arduino microprocessor for automated detection of experimental data, such as optical density measurement at 600 nm, stirring, gas measurement, and wireless data transmission.
[1] Provisional State of the Global Climate in 2022 – WMO (2022).
[2] Summary for Policymakers. Climate Change 2021: The Physical Science Basis – IPCC (2021).
[3] CO2 Emissions in 2022 – Analysis – IEA (2022).
[4] Stuart Hogg. Essential Microbiology. Wiley. (2005).
[5] K. Trchounian., A. Trchounian. Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives. Applied Energy, 156 (2015), pp. 174-184.
[6] R. Nandi., S. Sengupta. Microbial production of hydrogen: an overview. Critical Reviews in Microbiology, 24 (1998), pp. 61-84.
[7] D. Dutta., D. De, S. Chaudhuri & S. K. Bhattacharya. Hydrogen production by Cyanobacteria. Microb Cell Fact, 4 (2005), 36.
[8] F. R. Blattner., G. Plunkett., C. A. Bloch., N. T. Perna., V. Burland., M. Riley., Julio Collado-Vides., J. D. Glasner., … & Y. Shao. The Complete Genome Sequence of Escherichia coli K-12. Science, 277 (1997), pp. 1453-1462.
[9] L. N. McKernan. Using a Simple Escherichia coli Growth Curve Model to Teach the Scientific Method. The American Biology Teacher, 77 (2015), pp. 357-362.
[10] D. S. Lin., C. H. Lee., Y. T. Yang. Wireless bioreactor for anaerobic cultivation of bacteria. Biotechnology Progress, 36 (2020), 3009.
[11] Britannica, The Editors of Encyclopaedia. "cellular respiration". Encyclopedia Britannica, https://www.britannica.com/science/cellular-respiration. (2023).
[12] G. Unden., J. Bongaerts. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochimica et Biophysica Acta, 1320 (1997), pp. 217-234.
[13] A. C. Bohnenkamp., R. H. Wijffels., S. W. M. Kengen., R. A. Weusthuis. Co-production of hydrogen and ethyl acetate in Escherichia coli. Biotechnol Biofuels, 14 (2021), 192.
[14] B. Vivijs., L. U. Haberbeck., V. B. M. Mbong., K. Bernaerts., A. H. Geeraerd., A. Aertsen. & C. W. Michiels. Formate hydrogen lyase mediates stationary-phase deacidification and increases survival during sugar fermentation in acetoin-producing enterobacteria. Frontiers, 6 (2015).
[15] M. Das., S. Mukhopadhyay., R. K. De. Gradient Descent Optimization in Gene Regulatory Pathways. Plos one, 5 (2010).
[16] P. C. Liu., Y. T. Lee., C. Y Wang., and Y. T. Yang, Design and Use of a Low Cost, Automated Morbidostat for Adaptive Evolution of Bacteria Under Antibiotic Drug Selection. J Vis Exp, 115 (2016), 54426.
[17] S. A. Mohr., E. A. Zottola., G. A. Reineccius. The Use of Gas Chromatography to Measure Carbon Dioxide Production by Dairy Starter Cultures. Journal of Dairy Science, 76 (1993), pp. 3350-3353.
[18] M. B. Jaffe. Infrared Measurement of Carbon Dioxide in the Human Breath: “Breathe-Through” Devices from Tyndall to the Present Day. Anesthesia & Analgesia, 107 (2008), pp. 890-904.
[19] 劉承恩,<釀酒溫度與二氧化碳監控平台-以紅葡萄酒為例>,國立中興大學電機工程學系所碩士論文,2019。
[20] V. Varlet., F. Smith., M. Augsburger. Indirect hydrogen analysis by gas chromatography coupled to mass spectrometry (GC–MS). Journal of Mass Spectrometry, 48 (2013), pp. 914-918.
[21] S. Moroe., P. L. Woodfield., K. Kimura., M. Kohno., J. Fukai., M. Fujii., K. Shinzato. & Y. Takata. Measurements of Hydrogen Thermal Conductivity at High Pressure and High Temperature. International Journal of Thermophysics, 32 (2011).
[22] J. J. Podesta., A. M. Gutierrez-Navarro., C. N. Estrella., M. A. Esteso. Electrochemical measurement of trace concentrations of biological hydrogen produced by Enterobacteriaceae. Research in Microbiology, 148 (1997), pp. 87-93.
[23] 黃韋翰,<基於真空系統之微型生物反應器於在線測量二氧化碳產量之研究>,國立清華大學電子工程研究所碩士論文,2021。
[24] J. Hodgkinson., R. Smith., W. O. Ho., J. R. Saffell., R. P. Tatam. Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sensors and Actuators B: Chemical, 186 (2013), pp. 580-588.
[25] P. S. Swain., K. Stevenson., A. Leary., L. F. Montano-Gutierrez., I. B. N. Clark., J. Vogel., & T. Pilizota. Inferring time-derivatives including cell growth rates using Gaussian processes. Nature Communications, 7 (2016), 13766.
[26] M. Diaz-Guerra., M. Esteban., J. L. Martinez. Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiology Letters, 149 (1997), pp. 107-113.
[27] E. M. Ammar., X. Wang., C. V. Rao. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Scientific Reports, 8 (2018), 609.