簡易檢索 / 詳目顯示

研究生: 施政瑋
論文名稱: 中文文本蘊含辨識
Textual Entailment Recognition in Chinese
指導教授: 許聞廉
口試委員: 陳信希
張俊盛
陳克健
蔡宗翰
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 165
中文關鍵詞: Textual Entailment RecognitionChinese
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 文本蘊含辨識為辨識兩文句之間蘊含關係(inference)的技術。對許多自然語言處理應用來說,文本蘊含辨識的技術可以提供許多的幫助。本論文針對中文文本蘊含辨識進行深入的研究與探討,首先回顧世界各國目前對文本蘊含辨識研究的現況,包括相關的活動及競賽、常用資源與工具、以及主流的文本蘊含辨識方法。其次、本研究使用常用的語言特徵實做一個基礎文本蘊含辨識系統以便於實際觀察文本蘊含辨識的癥結點以及中文文本蘊含辨識特有的現象。於本研究中亦提出在驗證基礎系統中所觀察到的詞彙的相似度及句子間的矛盾問題以及改進的方法並將及其整合於進一個新的中文文本蘊含辨識。相較於基礎系統的表現,本研究所實作改進的系統在兩次NTCIR RITE國際競賽的資料集中不管是辨識各種蘊含關係的正確率(Accuracy),或是系統的強固性(Robustness)皆取得顯著的提升,根據其驗證結果本研究也同時提出中文文本蘊含辨識未來可能的發展方向。


    Recognizing Textual Entailment is a task that recognizes pairs of natural language expressions. It is useful in a wide range of applications in NLP such as text summarization, question answering, and machine translation. In this thesis we focus on textual entailment recognition in Chinese. We first conduct an extensive survey of the vast literature on textual entailment recognition and related events, resources, tools, and common-used approaches. Besides, our experience of constructing a baseline Chinese textual entailment recognition system and the evaluation results are demonstrated. Based on the observation of the evaluation results, a sense decomposition-based word similarity measurement and a novel approach of detecting contradictions in text are proposed to tackle the issues of word similarity measurement and contradiction detection observed in baseline evaluations. The following evaluations show that our new integrated textual entailment recognition system outperforms the baseline system in almost every aspects in the dataset of NTCIR-10 RITE. Finally, the potential research directions of Chinese textual entailment recognition are listed in the end of the thesis.

    1 INTRODUCTION 1.1 Textual Entailment 1.2 Beneficiaries of Textual Entailment Recognition 1.3 The Challenge of Textual Entailment 1.4 The Focus 1.5 Contribution of This Thesis 1.5.1 Extensive Survey and Classification of Previous Methods, Resources, and Tools in TE Recognition 1.5.2 The Developmental Experience of a Baseline Chinese Textual Entailment System 1.5.3 Knowledge Decomposition-Oriented Chinese Word Similarity Measure 1.5.4 A Novel Web Query-Based Approach to Find Contradictions in Texts 1.5.5 Discussing of an Improved Chinese Textual Entailment Recognition System 1.6 Thesis Overview 2 RESEARCHES OF TEXTUAL ENTAILMENT RECOGNITION 2.1 Recognizing Textual Entailment Tasks and Events 2.1.1 Textual Entailment Recognition (RTE) Challenge 2.1.2 Textual Entailment Recognition in Other Language 2.1.3 Recognizing Inference in Text (RITE) 2.2 Resources for Textual Entailment Recognition 2.2.1 WordNet and eXtended WordNet 2.2.2 FrameNet 2.2.3 PropBank 2.2.4 VerbNet and VerbOcean 2.2.5 DIRT 2.2.6 Commonly Used Tools 2.2.7 RTE Resource Ablation Test 2.3 Approaches of Entailment Recognition in RTE Events 2.3.1 Lexical Similarity-Based Recognition 2.3.2 N-gram and Alignment-Based Recognition 2.3.3 Syntactic Similarity-Based Recognition 2.3.4 Semantic Similarity-Based Recognition 2.3.5 Logic-based Recognition 2.3.6 Inference Rule-based Recognition 2.3.7 Recognition Approaches that Employ Machine Learning 2.4 Textual Entailment Recognition in Chinese 3 A Baseline Chinese Textual Entailment Recognition System 3.1 Common Representations used in Chinese Textual Entailment Recognition 3.1.1 Named Entities 3.1.2 Chinese Tokens 3.1.3 Syntactic Word Dependency 3.1.4 Antonyms and Negatives 3.2 Necessary Preprocessing in Chinese Textual Entailment Recognition 3.2.1 Normalization of Temporal and Numerical Expressions 3.2.2 Named Entity Recognition 3.2.3 Coreference Resolution 3.2.4 Chinese Synonym Identification 3.3 Baseline System Architecture 3.4 Evaluation 3.4.1 Evaluation Setting 3.4.2 Evaluation Results 3.4.3 Evaluation Results – by Entailment Relation Category 3.4.4 Evaluation Results – Compared with the Other Participating Systems 3.5 Discussion 4 CHINESE WORD SIMILARITY 4.1 Survey of Knowledge-based Word Similarity Measurement 4.1.1 Knowledge-based Approaches 4.1.2 The Issues of Knowledge-based Word Similarity Measures 4.2 Concept Composition and Decomposition 4.2.1 E-HowNet 4.2.2 Semantic Features and E-HowNet Primitives 4.2.3 Primitive Decomposition 4.2.4 Identifying Particular Semantic Attribute of Primitive 4.2.5 Weight of Semantic Attributes 4.3 Attribute Based Word Similarity Measure 4.3.1 Weight of Semantic Attributes 4.3.2 Evaluation 4.3.3 Evaluation Setting 4.3.4 Experiment 1: Comparing with Classic Taxonomy-based Word Similarity Measurements 4.3.5 Experiment 2: Comparing with participants in SemEval 2012 Chinese word similarity measurement share task 4.4 Discussion 4.5 Conclusion 5 Validate Contradiction in Texts Using Online Co-Mention Pattern Checking 5.1 Related Works 5.2 Background Knowledge for Detecting Contradictions 5.2.1 Linguistic Phenomena of Contradictions in RITE 5.2.2 Incompleteness of Background Knowledge 5.3 Methods of Using Mismatch Conjunction Phrase for Contradiction Detection 5.3.1 Definition of Mismatch Conjunction Phrase 5.3.2 Mismatch Conjunction Phrase Generation 5.3.3 Checking Mismatch Conjunction Phrase for Detecting Contradictions 5.3.4 Threshold Determination 5.4 Experiments and Results 5.4.1 Experiment 1: TE Corpus with Manually-Annotated and Automatic Extracted Mismatch Information 5.4.2 Experiment 2: Contradiction Detection on Different RITE Dataset 5.4.3 Experiment 3: Contradiction Detection on Different Linguistic Phenomena 5.5 Discussions and Future Works 5.5.1 Potential Exceptionable Web Contents for MCP-Based Contradiction Detection 5.5.2 Unexpected Zero-hit Mismatch Conjunction Phrases 5.5.3 Critical Mismatch Extraction 5.5.4 Threshold of Availability Value 5.5.5 Other Findings and Research Direction 5.6 Conclusion 6 Integration Evaluation of Our Enhanced Textual Entailment Recognition System 6.1 Information Coverage Judgment 6.1.1 Named Entities 6.1.2 Tokens 6.1.3 Dependency Word Pairs 6.2 Contradiction Recognition 6.2.1 Named Entity-based Contradiction Recognition 6.2.2 Token-Based Contradiction Recognition 6.3 System Architecture 6.4 Evaluation 6.4.1 Evaluation Setting 6.4.2 Evaluation Results 6.4.3 Recognition Result Analysis – Comparing with Our Prior Work 6.4.4 Recognition Result Analysis – Comparing with the Other Participants 6.5 Analysis of the Integration Evaluations 6.6 Other Observations 7 Discussion and Conclusions 7.1 Recapitulation 7.2 Future Direction 7.2.1 Improved NLP Tools and Techniques 7.2.2 Lexicon Entailment 7.2.3 New TE Recognition Evaluation 7.2.4 Practical Usage of Textual Entailment Recognition Techniques

    [1] Rod Adams, Gabriel Nicolae, Cristina Nicolae, and A. Harabagiu. Textual
    entailment through extended lexical overlap, 2006.
    [2] Rod Adams, Gabriel Nicolae, Cristina Nicolae, and Sanda Harabagiu. Textual
    entailment through extended lexical overlap and lexico-semantic matching.
    In Proceedings of the ACL-PASCAL Workshop on Textual Entailment
    and Paraphrasing, pages 119{124. Association for Computational Linguistics,
    2007.
    [3] Roni Ben Aharon, Idan Szpektor, and Ido Dagan. Generating entailment
    rules from framenet. In Proceedings of the ACL 2010 Conference Short
    Papers, pages 241{246. Association for Computational Linguistics, 2010.
    [4] Ion Androutsopoulos and Prodromos Malakasiotis. A survey of paraphrasing
    and textual entailment methods. arXiv preprint arXiv:0912.3747, 2009.
    [5] Arti Arya, Vishwanath Yaligar, Ramya D Prabhu, Ramya Reddy, and Rohith
    Acharaya. A knowledge based approach for recognizing textual entailment
    for natural language inference using data mining. International
    Journal on Computer Science & Engineering, 2(6), 2010.
    149
    [6] Collin F Baker, Charles J Fillmore, and John B Lowe. The berkeley framenet
    project. In Proceedings of the 36th Annual Meeting of the Association for
    Computational Linguistics and 17th International Conference on Computational
    Linguistics-Volume 1, pages 86{90. Association for Computational
    Linguistics, 1998.
    [7] Roy Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo,
    Bernardo Magnini, and Idan Szpektor. The second pascal recognising textual
    entailment challenge. 2006.
    [8] John Bateman and Michael Zock. Natural language generation. Oxford
    handbook of computational linguistics, pages 284{304, 2003.
    [9] Luisa Bentivogli, Elena Cabrio, Ido Dagan, Danilo Giampiccolo, Medea Lo
    Leggio, and Bernardo Magnini. Building textual entailment specialized data
    sets: a methodology for isolating linguistic phenomena relevant to inference.
    In LREC, 2010.
    [10] Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Dang, and Danilo Giampiccolo.
    The sixth pascal recognizing textual entailment challenge. Proceedings
    of TAC, 2010, 2010.
    [11] Luisa Bentivogli, Peter Clark, Ido Dagan, Hoa Dang, and Danilo Giampiccolo.
    The seventh pascal recognizing textual entailment challenge. Proceedings
    of TAC, 2011, 2011.
    [12] Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and
    Bernardo Magnini. The fth pascal recognizing textual entailment challenge.
    Proceedings of TAC, 9:14{24, 2009.
    150
    [13] Arindam Bhattacharya. A survey of text entailment until june 2012. 2012.
    [14] Johan Bos and Katja Markert. Recognising textual entailment with logical
    inference. In Proceedings of the conference on Human Language Technology
    and Empirical Methods in Natural Language Processing, pages 628{635.
    Association for Computational Linguistics, 2005.
    [15] Johan Bos, Fabio Massimo Zanzotto, and Marco Pennacchiotti. Textual
    entailment at evalita 2009. Proceedings of EVALITA, 2009(6.4):2, 2009.
    [16] Chris Brockett and William B Dolan. Support vector machines for paraphrase
    identi cation and corpus construction. In Proceedings of the 3rd
    International Workshop on Paraphrasing, pages 1{8, 2005.
    [17] Alexander Budanitsky and Graeme Hirst. Semantic distance in wordnet: An
    experimental, application-oriented evaluation of ve measures. In Workshop
    on WordNet and Other Lexical Resources, volume 2, 2001.
    [18] Alexander Budanitsky and Graeme Hirst. Evaluating wordnet-based measures
    of lexical semantic relatedness. Computational Linguistics, 32(1):13{
    47, 2006.
    [19] Aljoscha Burchardt and Doktors der Philosophie der Philosophischen
    Fakultaten. Modeling Textual Entailment with Role-Semantic Information.
    German Research Center for Arti cal Intelligence, 2008.
    [20] Aljoscha Burchardt and Anette Frank. Approaching textual entailment with
    lfg and framenet frames. In Proc. of the Second PASCAL RTE Challenge
    Workshop. Citeseer, 2006.
    151
    [21] Aljoscha Burchardt and Marco Pennacchiotti. Fate: a framenet-annotated
    corpus for textual entailment. In LREC, 2008.
    [22] Aljoscha Burchardt, Nils Reiter, Stefan Thater, and Anette Frank. A semantic
    approach to textual entailment: System evaluation and task analysis.
    In Proceedings of the ACL-PASCAL Workshop on Textual Entailment and
    Paraphrasing, pages 10{15. Association for Computational Linguistics, 2007.
    [23] Mary Elaine Cali and Raymond J Mooney. Bottom-up relational learning of
    pattern matching rules for information extraction. The Journal of Machine
    Learning Research, 4:177{210, 2003.
    [24] Chris Callison-Burch, Philipp Koehn, and Miles Osborne. Improved statistical
    machine translation using paraphrases. In Proceedings of the main
    conference on Human Language Technology Conference of the North American
    Chapter of the Association of Computational Linguistics, pages 17{24.
    Association for Computational Linguistics, 2006.
    [25] Julio J Castillo. Sagan in tac2009: Using support vector machines in recognizing
    textual entailment and te search pilot task. Proc. of TAC, 2009.
    [26] Keh-Jiann Chen, Shu-Ling Huang, Yueh-Yin Shih, and Yi-Jun Chen.
    Extended-hownet-a representational framework for concepts. In Proceedings
    of Second International Joint Conference, 2005.
    [27] Timothy Chklovski and Patrick Pantel. Verbocean: Mining the web for
    ne-grained semantic verb relations. In EMNLP, volume 2004, pages 33{40,
    2004.
    152
    [28] Peter Clark and Phil Harrison. Recognizing textual entailment with logical
    inference. In Text Analysis Conference (TAC 2008) Workshop-RTE-4 Track.
    National Institute of Standards and Technology (NIST). Citeseer, 2008.
    [29] Trevor Anthony Cohn and Mirella Lapata. Sentence compression as tree
    transduction. arXiv preprint arXiv:1401.5693, 2014.
    [30] Cleo Condoravdi, Dick Crouch, Valeria De Paiva, Reinhard Stolle, and
    Daniel G Bobrow. Entailment, intensionality and text understanding. In
    Proceedings of the HLT-NAACL 2003 workshop on Text meaning-Volume 9,
    pages 38{45. Association for Computational Linguistics, 2003.
    [31] Anne Curzan and Michael Adams. How English works: A linguistic introduction.
    Pearson Higher Ed, 2014.
    [32] Ido Dagan and Oren Glickman. Probabilistic textual entailment: Generic
    applied modeling of language variability. 2004.
    [33] Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising
    textual entailment challenge. In Machine Learning Challenges. Evaluating
    Predictive Uncertainty, Visual Object Classi cation, and Recognising Tectual
    Entailment, pages 177{190. Springer, 2006.
    [34] Liuling Dai, Bin Liu, Yuning Xia, and ShiKun Wu. Measuring semantic similarity
    between words using hownet. In Computer Science and Information
    Technology, 2008. ICCSIT'08. International Conference on, pages 601{605.
    IEEE, 2008.
    153
    [35] Florence Duclaye, Francois Yvon, and Olivier Collin. Learning paraphrases
    to improve a question-answering system. In Proceedings of the EACL
    Workshop on Natural Language Processing for Question Answering Systems,
    pages 35{41, 2003.
    [36] Christiane Fellbaum. Wordnet: An electronic lexical database. 1998. Word-
    Net is available from http://www. cogsci. princeton. edu/wn, 2010.
    [37] Jin Feng, Yiming Zhou, and Trevor Martin. Recognizing textual entailment
    based on wordnet. In Intelligent Information Technology Application, 2008.
    IITA'08. Second International Symposium on, volume 2, pages 27{31. IEEE,
    2008.
    [38] Andrew Finch, Young-Sook Hwang, and Eiichiro Sumita. Using machine
    translation evaluation techniques to determine sentence-level semantic equivalence.
    In Proceedings of the Third International Workshop on Paraphrasing
    (IWP2005), pages 17{24, 2005.
    [39] Pamela Forner, Anselmo Pe~nas, Eneko Agirre, I~naki Alegria, Corina Forascu,
    Nicolas Moreau, Petya Osenova, Prokopis Prokopidis, Paulo Rocha, Bogdan
    Sacaleanu, et al. Overview of the clef 2008 multilingual question answering
    track. In Evaluating Systems for Multilingual and Multimodal Information
    Access, pages 262{295. Springer, 2009.
    [40] Danilo Giampiccolo, Hoa Trang Dang, Bernardo Magnini, Ido Dagan, Elena
    Cabrio, and Bill Dolan. The fourth pascal recognizing textual entailment
    challenge. In Proceedings of the First Text Analysis Conference (TAC 2008),
    2009.
    154
    [41] Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The
    third pascal recognizing textual entailment challenge. In Proceedings of the
    ACL-PASCAL workshop on textual entailment and paraphrasing, pages 1{9.
    Association for Computational Linguistics, 2007.
    [42] Oren Glickman, Ido Dagan, and Moshe Koppel. A probabilistic classi cation
    approach for lexical textual entailment. In Proceedings of the National
    Conference On Arti cial Intelligence, volume 20, page 1050. Menlo Park,
    CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.
    [43] Ralph Grishman. Information extraction. The Handbook of Computational
    Linguistics and Natural Language Processing, pages 515{530, 2003.
    [44] Aria D Haghighi, Andrew Y Ng, and Christopher D Manning. Robust textual
    inference via graph matching. In Proceedings of the conference on Human
    Language Technology and Empirical Methods in Natural Language Processing,
    pages 387{394. Association for Computational Linguistics, 2005.
    [45] Sanda Harabagiu, Andrew Hickl, and Finley Lacatusu. Negation, contrast
    and contradiction in text processing. In AAAI, volume 6, pages 755{762,
    2006.
    [46] Andrew Hickl. Using discourse commitments to recognize textual entailment.
    In Proceedings of the 22nd International Conference on Computational
    Linguistics-Volume 1, pages 337{344. Association for Computational
    Linguistics, 2008.
    [47] Eduard Hovy and Daniel Marcu. Automated text summarization. The
    Oxford Handbook of computational linguistics, pages 583{598, 2005.
    155
    [48] Wen-Lian Hsu, Shih-Hung Wu, and Yi-Shiou Chen. Event identi cation
    based on the information map-infomap. In Systems, Man, and Cybernetics,
    2001 IEEE International Conference on, volume 3, pages 1661{1666. IEEE,
    2001.
    [49] Chu-Ren Huang, Ru-Yng Chang, and Hshiang-Pin Lee. Sinica bow (bilingual
    ontological wordnet): Integration of bilingual wordnet and sumo. In
    LREC, 2004.
    [50] Adrian Iftene. Uaic participation at rte4.
    [51] Adrian Iftene and Alexandra Balahur-Dobrescu. Hypothesis transformation
    and semantic variability rules used in recognizing textual entailment. In Proceedings
    of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing,
    pages 125{130. Association for Computational Linguistics, 2007.
    [52] Adrian Iftene and Mihai-Alex Moruz. Uaic participation at rte5. Proceedings
    of TAC, Gaithersburg, Maryland, 2009.
    [53] Diana Inkpen, Darren Kipp, and Vivi Nastase. Machine learning experiments
    for textual entailment. Proceedings of the second RTE challenge,
    Venice-Italy, 2006.
    [54] Jay J Jiang and David W Conrath. Semantic similarity based on corpus
    statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008, 1997.
    [55] Yu Jiangsheng and Yu Shiwen Liu Yang Zhang Huarui. Introduction to
    chinese concept dictionary. ICCC2001 (Singapore).
    156
    [56] Peng Jin and Yunfang Wu. Semeval-2012 task 4: evaluating chinese word
    similarity. In Proceedings of the First Joint Conference on Lexical and Computational
    Semantics-Volume 1: Proceedings of the main conference and the
    shared task, and Volume 2: Proceedings of the Sixth International Workshop
    on Semantic Evaluation, pages 374{377. Association for Computational Linguistics,
    2012.
    [57] Kevin Knight and Daniel Marcu. Summarization beyond sentence extraction:
    A probabilistic approach to sentence compression. Arti cial Intelligence,
    139(1):91{107, 2002.
    [58] John La erty, Andrew McCallum, and Fernando CN Pereira. Conditional
    random elds: Probabilistic models for segmenting and labeling sequence
    data. 2001.
    [59] Claudia Leacock and Martin Chodorow. Combining local context and wordnet
    similarity for word sense identi cation. WordNet: An electronic lexical
    database, 49(2):265{283, 1998.
    [60] Cheng-Wei Lee, Chuan-Jie Lin, Hideki Shima, and Wen-Lian Hsu. Evaluating
    and enhancing cross-domain rank predictability of textual entailment
    datasets. In Information Reuse and Integration (IRI), 2012 IEEE 13th International
    Conference on, pages 51{58. IEEE, 2012.
    [61] Gina-Anne Levow. The third international chinese language processing bakeo
    : Word segmentation and named entity recognition. In Proceedings of
    the Fifth SIGHAN Workshop on Chinese Language Processing, volume 117.
    Sydney: July, 2006.
    157
    [62] Chuan-Jie Lin, Cheng-Wei Lee, Cheng-Wei Shih, and Wen-Lian Hsu. Rank
    correlation analysis of ntcir-10 rite-2 chinese datasets and evaluation metrics.
    In Information Reuse and Integration (IRI), 2013 IEEE 14th International
    Conference on, pages 62{68. IEEE, 2013.
    [63] Dekang Lin and Patrick Pantel. Discovery of inference rules for questionanswering.
    Natural Language Engineering, 7(4):343{360, 2001.
    [64] Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou. Identifying synonyms
    among distributionally similar words. In IJCAI, volume 3, pages
    1492{1493, 2003.
    [65] Jiangming Liu, Jinan Xu, and Yujie Zhang. An approach of hybrid hierarchical
    structure for word similarity computing by hownet. DEF, 1:2.
    [66] Wei-Yun Ma and Keh-Jiann Chen. Introduction to ckip chinese word segmentation
    system for the rst international chinese word segmentation bakeo
    . In Proceedings of the second SIGHAN workshop on Chinese language
    processing-Volume 17, pages 168{171. Association for Computational Linguistics,
    2003.
    [67] Bill MacCartney, Michel Galley, and Christopher D Manning. A phrasebased
    alignment model for natural language inference. In Proceedings of
    the conference on empirical methods in natural language processing, pages
    802{811. Association for Computational Linguistics, 2008.
    [68] Bernardo Magnini and Elena Cabrio. Combining specialized entailment engines.
    Proceedings of LTC09, 2009.
    158
    [69] Bernardo Magnini and Elena Cabrio. Contradiction-focused qualitative evaluation
    of textual entailment. In Proceedings of the Workshop on Negation
    and Speculation in Natural Language Processing, pages 86{94. Association
    for Computational Linguistics, 2010.
    [70] Prodromos Malakasiotis. Aueb at tac 2009. In Proceedings of the TAC 2009
    Workshop on Textual Entailment. Citeseer, 2009.
    [71] Prodromos Malakasiotis. Paraphrase recognition using machine learning
    to combine similarity measures. In Proceedings of the ACL-IJCNLP 2009
    Student Research Workshop, pages 27{35. Association for Computational
    Linguistics, 2009.
    [72] Inderjeet Mani. Automatic summarization, volume 3. John Benjamins Publishing,
    2001.
    [73] Llus Marquez, Xavier Carreras, Kenneth C Litkowski, and Suzanne Stevenson.
    Semantic role labeling: an introduction to the special issue. Computational
    linguistics, 34(2):145{159, 2008.
    [74] Shachar Mirkin, Ido Dagan, Lili Kotlerman, and Idan Szpektor.
    Classi cation-based contextual preferences. In Proceedings of the TextInfer
    2011 Workshop on Textual Entailment, pages 20{29. Association for Computational
    Linguistics, 2011.
    [75] Shachar Mirkin, Lucia Specia, Nicola Cancedda, Ido Dagan, Marc Dymetman,
    and Idan Szpektor. Source-language entailment modeling for translating
    unknown terms. In Proceedings of the Joint Conference of the 47th
    159
    Annual Meeting of the ACL and the 4th International Joint Conference on
    Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 791{
    799. Association for Computational Linguistics, 2009.
    [76] Dan I Moldovan and Vasile Rus. Logic form transformation of wordnet and
    its applicability to question answering. In Proceedings of the 39th Annual
    Meeting on Association for Computational Linguistics, pages 402{409. Association
    for Computational Linguistics, 2001.
    [77] Christof Monz and Maarten de Rijke. Light-weight entailment checking for
    computational semantics. In Proc. of the third workshop on inference in
    computational semantics (ICoS-3), 2001.
    [78] Alessandro Moschitti. Syntactic and semantic kernels for short text pair categorization.
    In Proceedings of the 12th Conference of the European Chapter
    of the Association for Computational Linguistics, pages 576{584. Association
    for Computational Linguistics, 2009.
    [79] Vincent Ng. Unsupervised models for coreference resolution. In Proceedings
    of the Conference on Empirical Methods in Natural Language Processing,
    pages 640{649. Association for Computational Linguistics, 2008.
    [80] Rodney D Nielsen, Wayne Ward, and James H Martin. Recognizing entailment
    in intelligent tutoring systems. Natural Language Engineering,
    15(4):479{501, 2009.
    [81] Sebastian Pado, Marie-Catherine de Marne e, Bill MacCartney, Anna N
    Ra erty, Eric Yeh, and Christopher D Manning. Deciding entailment and
    160
    contradiction with stochastic and edit distance-based alignment. In Proceedings
    of the rst text analysis conference, TAC, volume 8, 2008.
    [82] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank:
    An annotated corpus of semantic roles. Computational Linguistics, 31(1):71{
    106, 2005.
    [83] Maria Teresa Pazienza, Marco Pennacchiotti, and Fabio Massimo Zanzotto.
    Textual entailment as syntactic graph distance: a rule based and a svm based
    approach. In Proceedings of the Pattern Analysis, Statistical Modelling, and
    Computational Learning (PASCAL) Challenges Workshop on Recognising
    Textual Entailment, 2005.
    [84] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet:: Similarity:
    measuring the relatedness of concepts. In Demonstration Papers at
    HLT-NAACL 2004, pages 38{41. Association for Computational Linguistics,
    2004.
    [85] Rajat Raina, Aria Haghighi, Christopher Cox, Jenny Finkel, Je Michels,
    Kristina Toutanova, Bill MacCartney, Marie-Catherine de Marne e,
    Christopher D Manning, and Andrew Y Ng. Robust textual inference using
    diverse knowledge sources. In Proc. of the 1st. PASCAL Recognision Textual
    Entailment Challenge Workshop, Southampton, UK, pages 57{60, 2005.
    [86] Han Ren, Hongmial Wu, Chen Lv, Donghong Ji, and Jing Wan. The whute
    system in ntcir-10 rite task. In Proceedings of NTCIR-10 Workshop Meeting,
    pages 560{565, 2013.
    161
    [87] Philip Resnik. Using information content to evaluate semantic similarity in
    a taxonomy. arXiv preprint cmp-lg/9511007, 1995.
    [88] Alan Ritter, Doug Downey, Stephen Soderland, and Oren Etzioni. It's a
    contradiction|no, it's not: a case study using functional relations. In Proceedings
    of the Conference on Empirical Methods in Natural Language Processing,
    pages 11{20. Association for Computational Linguistics, 2008.
    [89] Horacio Saggion, Robert Gaizauskas, Mark Hepple, Ian Roberts, and Mark A
    Greenwood. Exploring the performance of boolean retrieval strategies for
    open domain question answering. In Proc. of the IR4QA Workshop at SIGIR,
    2004.
    [90] Mehran Sahami and Timothy D Heilman. A web-based kernel function for
    measuring the similarity of short text snippets. In Proceedings of the 15th
    international conference on World Wide Web, pages 377{386. ACM, 2006.
    [91] Karin Kipper Schuler. Verbnet: A broad-coverage, comprehensive verb lexicon.
    2005.
    [92] Cheng-Wei Shih, Cheng-Wei Lee, Ting-Hao Yang, and Wen-Lian Hsu. Iasl
    rite system at ntcir-9. In Proceedings of the NTCIR-9 Workshop, pages
    379{385, 2011.
    [93] Cheng-Wei Shih, Tzong-Han Tsai, Shih-Hung Wu, Chiu-Chen Hsieh, and
    Wen-Lian Hsu. The construction of a chinese named entity tagged corpus:
    Cnec1.0. In ROCLING, 2004.
    162
    [94] Hideki Shima, Hiroshi Kanayama, Cheng-Wei Lee, Chuan-Jie Lin, Teruko
    Mitamura, Yusuke Miyao, Shuming Shi, and Koichi Takeda. Overview of
    ntcir-9 rite: Recognizing inference in text. In Proceedings of NTCIR-9 Workshop
    Meeting, pages 291{301, 2011.
    [95] Yusuke Shinyama and Satoshi Sekine. Paraphrase acquisition for information
    extraction. In Proceedings of the second international workshop on
    Paraphrasing-Volume 16, pages 65{71. Association for Computational Linguistics,
    2003.
    [96] Michael Sussna. Word sense disambiguation for free-text indexing using a
    massive semantic network. In Proceedings of the second international conference
    on Information and knowledge management, pages 67{74. ACM, 1993.
    [97] Idan Szpektor and Ido Dagan. Learning entailment rules for unary templates.
    In Proceedings of the 22nd International Conference on Computational
    Linguistics-Volume 1, pages 849{856. Association for Computational
    Linguistics, 2008.
    [98] Marta Tatu, Brandon Iles, John Slavick, Adrian Novischi, and Dan
    Moldovan. Cogex at the second recognizing textual entailment challenge.
    In Proceedings of the Second PASCAL Challenges Workshop on Recognising
    Textual Entailment, pages 104{109, 2006.
    [99] Marta Tatu and Dan Moldovan. A semantic approach to recognizing textual
    entailment. In Proceedings of the conference on Human Language Technology
    and Empirical Methods in Natural Language Processing, pages 371{378.
    Association for Computational Linguistics, 2005.
    163
    [100] Marta Tatu and Dan Moldovan. Cogex at rte3. In Proceedings of the ACLPASCAL
    Workshop on Textual Entailment and Paraphrasing, pages 22{27.
    Association for Computational Linguistics, 2007.
    [101] Ellen M Voorhees. Contradictions and justi cations: Extensions to the textual
    entailment task. In ACL, pages 63{71, 2008.
    [102] Xiao-Lin Wang, Hai Zhao, and Bao-Liang Lu. Bcmi-nlp labeled-alignmentbased
    entailment system for ntcir-10 rite-2 task. In Proceeding of the 10th
    NTCIR Conference, Tokyo, Japan, 2013.
    [103] Yotaro Watanabe, Yusuke Miyao, Junta Mizuno, Tomohide Shibata, Hiroshi
    Kanayama, Cheng-Wei Lee, Chuan-Jie Lin, Shuming Shi, Teruko Mitamura,
    Noriko Kando, et al. Overview of the recognizing inference in text (rite-2)
    at ntcir-10. In Proceedings of the 10th NTCIR Conference, 2013.
    [104] Chia-Wei Wu, Shyh-Yi Jan, Richard Tzong-Han Tsai, and Wen-Lian Hsu.
    On using ensemble methods for chinese named entity recognition. In Proceedings
    of the 5th SIGHAN Workshop on Chinese Language Processing,
    pages 142{145, 2006.
    [105] Yu-Chieh Wu, Chung-Jung Lee, and Yaw-Chu Chen. Mcu at ntcir: A resources
    limited chinese textual entailment recognition system. In Proceedings
    of the 9th NTCIR workshop meeting on evaluation of information access
    technologies, 2011.
    [106] Jia-Ming You and Keh-Jiann Chen. Automatic semantic role assignment for
    a tree structure. In Proceedings of the 3rd SigHAN Workshop on Chinese
    Language Processing, volume 109, page 115, 2004.
    164
    [107] Fabio Massimo Zanzotto and Lorenzo Dell'Arciprete. Ecient kernels for
    sentence pair classi cation. In Proceedings of the 2009 Conference on Empirical
    Methods in Natural Language Processing: Volume 1-Volume 1, pages
    91{100. Association for Computational Linguistics, 2009.
    [108] Fabio Massimo Zanzotto, Marco Pennacchiotti, and Alessandro Moschitti.
    A machine learning approach to textual entailment recognition. Natural
    Language Engineering, 15(4):551{582, 2009.
    [109] Yaoyun Zhang, Jun Xu, Chenlong Liu, Xiaolong Wang, Ruifeng Xu, Qingcai
    Chen, Xuan Wang, Yongshuai Hou, and Buzhou Tang. Icrc hitsz at rite:
    leveraging multiple classi ers voting for textual entailment recognition. In
    Proceedings of the NTCIR-9 Workshop, pages 325{329, 2011.
    [110] Yitao Zhang and Jon Patrick. Paraphrase identi cation by text canonicalization.
    In Proceedings of the Australasian language technology workshop,
    volume 2005, pages 160{166, 2005.
    [111] Shanheng Zhao and Hwee Tou Ng. Identi cation and resolution of chinese
    zero pronouns: A machine learning approach. In EMNLP-CoNLL, volume
    2007, pages 541{550, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE