研究生: |
林軒佑 Lin, Hsuan-You |
---|---|
論文名稱: |
用於次微米等級之投影式曝光光源之測試與開發 Testing and development of sub-micron projection light source |
指導教授: |
衛榮漢
Wei, Zung-hang |
口試委員: |
許文震
Sheu, Wen-Jenn 黃育綸 Huang, Yu-Lun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 黃光微影製程 、投影式曝光機 、次微米 |
外文關鍵詞: | Lithography Process Technology, Projection exposure machine, sub-micron |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著電子產業的蓬勃發展,電子產品所需的功能性越來越強,也使得半導體產也所需的線寬越來越小,以達到晶片每單位面積中所可放置的電晶體數量越來越多之目的,而黃光微影製程的重要性便顯得不言可喻。元件尺寸該如何縮得更小、速度更快、更省電,這都需要依靠黃光微影製程技術,然而如何提高製程良率、增加產能及降低成本都是先進製程技術的關鍵課題。本研究承襲學長留下投影式曝光機的基礎架構,將原本橫式投影式曝光改為直立式投影式曝光架構,為了達到縮小五倍光罩圖案,調整各光路其最適當之相對位置,在確定此系統達到縮小五倍光罩曝出圖形目標後,朝向次微米等級線寬以下持續邁進,其使用玻璃片為基板進行微影製成流程,利用電子顯微鏡以及光學顯微鏡觀察其所曝出之圖形,目的在測試過程中找出目前架構上的缺陷以及不足作調整,以找出最適合機台之曝光參數,作為後續製作微結構之基礎。
With the booming electronics industry, the functionality required for electronic products is becoming more and more powerful, and the line width required for semiconductor production is getting smaller so that the number of transistors able to place in unit area of the wafer is higher. The photolithography process is important. How to reduce the size of components, speed, and power, all rely on photolithography process technology. Improving process yield, increasing production capacity and reducing costs are the key issues of advanced process technology. This study inherited the foundation of the projection exposure machine, and changed the original horizontal projection exposure to the vertical projection exposure architecture. In order to reduce the reticle pattern by five times, the most appropriate relative position of each optical path is adjusted. After confirming that the system has achieved a five-fold reduction of the mask exposure target, it continues to try to achieve the line width can be under sub-micron. The glass substrate is used as a substrate for the lithography process, and the electron microscope and the optical microscope are used to observe the exposure. Graphics, the purpose of the current structural defects in the test process and insufficient adjustments to find the most suitable exposure parameters of the machine, as the basis for the subsequent fabrication of the microstructure.
[1] 蔡文勇(2006)。“I-Line光阻劑於TFT LCD Array製程之應用及評估”。國立中央大學化學工程與材料工程系學位論文,1-85。
[2] 蔡懿慈、周强、洪先龙、石蕊與王旸(2007)。光学邻近效应矫正 (OPC) 技术及其应用。中国科学: E辑, 37(12), 1607-1619。
[3] Adams, T. M., & Layton, R. A. (2009). Introductory MEMS: fabrication and applications (Vol. 70). Springer Science & Business Media.
[4] Davidson, M. W. (2015). Fundamentals of Mercury Arc Lamps, ZEISS.
[5] Harriott, L. R. (2001). Limits of lithography. Proceedings of the IEEE, 89(3), 366-374.
[6] Lee, H., Purdon, A. M., & Westervelt, R. M. (2004). Manipulation of biological cells using a microelectromagnet matrix. Applied physics letters, 85(6), 1063-1065.
[7] Meyerhofer, D. (1980). IEEE Trans. Electron Devices, vol. 27, p. 921.
[8] Miyagawa, K., Naruse, K., Ohnishi, S., Yamaguchi, K., Seko, K., Numa, N., & Iwasawa, N. (2001). Study on thermal crosslinking reaction of o-naphthoquinone diazides and application to electrodeposition positive photoresist. Progress in organic coatings, 42(1-2), 20-28.
[9] Plummer, J. D., Deal, M. D., & Griffin, P. B. (2000). Silicon VLSI Technology, Prentice Hall, Englewood Cliffs, NJ.
[10] Sheppard, C. J. R., & Hrynevych, M. (1992). Diffraction by a circular aperture: a generalization of Fresnel diffraction theory. JOSA A, 9(2), 274-281.
[11] Willson, C. , Thompson, L., & Bowden, M. (1994). Introduction to microlithography, Thompson, LF, p. 87.
[12] Xiao, H. (2015). Introduction to semiconductor manufacturing technology.