簡易檢索 / 詳目顯示

研究生: 吳政達
Wu,Cheng-Da
論文名稱: 單根奈米碳管場發射源製程技術及特性研究
Fabrication and characterization of individual carbon nanotube field emission source
指導教授: 邱博文
Chiu,Po-Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 83
中文關鍵詞: 奈米碳管場發射
外文關鍵詞: Carbon Nanotube, Field Emission
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 早在西元 1928 年 Fowler 和 Nordheim 等人便已針對金屬材料的場發射特性作理論研究,而後若干年場發射的研究從不間斷,隨著元件的微小化,更小的發射源,更低的起始電場,以及穩定的操作電壓都是被考慮的重點,奈米碳管符合此諸多優勢。在本論文中我們將利用奈米碳管來製程單根尖端的場發射源。
    在第一章中,我們將簡單的介紹奈米碳管: 包括奈米碳管的被發現;為碳的同素異形體且具有獨特優異的性質,奈米碳管的成長方式,幾何結構與分類還有電學性質...等等。
    在第二章中我們接著述說奈米碳管場發射的性質,它的特殊幾何結構被應用在場發射的優點,奈米碳管無須經過製程加工便提供了天然的奈米級尖端發射源,擁有更好的操作電壓等特性。並且引入單一根奈米碳管的電學性質研究,也是本論文的努力方向,不同於一般大面積成長的奈米碳管場發射應用,在此我們將針對單一根奈米碳管的場發射電子傳輸現象作研究。
    第三章是關於實驗技術的介紹,我們將利用溼式蝕刻方法製程單一根奈米碳管場發射源。細節包括: 將奈米碳管懸浮液以沉積方式,在沒有摻雜的二氧化矽晶片上面隨機撒佈奈米碳管,並且利用黃光微影 (optical lithography) 和電子束微影 (e-beam lithography) 製作參考座標和金屬電極,在參考座標上選擇我們要量測的奈米碳管進行導線銜接,再利用溼式蝕刻 (wet etching) 的方式蝕刻基板部分,讓奈米碳管與金屬電極逐步伸出基板邊緣而懸空,製程單根奈米碳管場發射源。
    在第四章中我們對於奈米碳管元件利用掃描式電子顯微鏡作結構分析,觀察經過溼式蝕刻後奈米碳管的形貌。用 Fowler Nordheim 理論分析元件的場發射特性,並用 Landauer Buttiker formula 來解釋我們所觀察到的電流傳輸現象。


    1 緒論 1 1.1 奈米碳管介紹 1 1.2 奈米碳管的合成方法 1 1.2.1 弧光放電法 (Arc discharge) 2 1.2.2 雷射熱融法 (Laser ablation) 2 1.2.3 化學氣相沉積法 (Chemical vapor deposition,CVD) 3 1.3 奈米碳管的幾何結構 5 1.4 奈米碳管的電子能帶結構 8 2 研究動機與文獻回顧 13 2.1 場發射理論 13 2.1.1 電子的發射型態 13 2.1.2 Fowler Nordheim theory 14 2.1.3 影響奈米碳管場發射的因素 22 2.2 奈米碳管場發射的量測 23 2.3 奈米碳管場發射應用 26 2.3.1 應用在場發射平面顯示器 (Field emission display) 26 2.3.2 應用在生物感測器 (Gaseous sensor) 28 2.4 溼式蝕刻法 (Wet etching method) 30 3 元件製備 33 3.1 製備單根奈米碳管懸空場發射元件 33 3.1.1 側向蝕刻法 (Side etch method) 34 3.1.2 窗口式垂直蝕刻法 (Top etch method) 36 3.2 元件製程步驟 37 3.2.1 試片預刻與劈裂 (Precleaving) 37 3.2.2 光學微影 (Optical lithography) 38 3.2.3 電子束微影 (Electron-beam lithography) 38 3.2.4 奈米碳管溶液製備與沉積 (Carbon nanotubes deposition) 42 3.2.5 金屬蒸鍍 (Metal deposition) 44 3.2.6 溼式蝕刻 (Wet etching) 44 3.2.7 臨界點乾燥法 (Critical point drying) 48 3.3 窗口式垂直蝕刻存在的問題 51 4 結構分析與元件的電性量測 55 4.1 單根奈米碳管場發射元件結構 55 4.1.1 掃描式電子顯微鏡 (Scanning Electron Microscopy) 55 4.1.2 單根奈米碳管場發射源 (Individual CNT field emission source) 57 4.2 側向蝕刻法所遭遇過的問題 62 4.2.1 曝光顯影的問題 62 4.2.2 厚金屬的測試 63 4.2.3 蝕刻溫度和時間測試 63 4.2.4 金屬線寬與蝕刻關係 63 4.2.5 奈米碳管會漂掉問題 66 4.3 電性量測 68 5 結論 75 參考文獻 Reference 80 附錄一: TMAH 之蝕刻率 81 附錄二: 不同濃度與溫度下 TMAH 之蝕刻率 83

    [1] Carbonfamily. http://www.bookzone.com.tw/
    [2] Seidel, R. Carbon Nanotube Devices. Ph.D. thesis, Technische Universitat Dresden (2004).
    [3] Iijima, S. Helical microtubles of graphitic carbon. Nature 354, 56 (1991).
    [4] Journet, C. et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756 (1997).
    [5] Dresselhaus, M. S., Dresselhaus, G. & Saito, R. Physics of carbon nanotubes. Carbon 33, 883 (1995).
    [6] Saito, R., Dresselhaus, G. & Dresselhaus, M. S.Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).
    [7] Falvo, M. R. et al. Bending and buckling of carbon nanotubes underlarge strain. Nature 389, 582 (1997).
    [8] Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes. Science 227, 1971 (1997).
    [9] Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronicstructure of graphene tubules based on C60. Phys. Rev. B 46, 1804 (1992).
    [10] Phaedon, A. Carbon nanotube electronics. Chem. Phys. 281, 429 (2002).
    [11] Meyer, J. C. Structure and properties of carbon nanotubes. Ph.D. thesis,Tubingen University (2005).
    [12] Dresselhaus, M. S. & Eklund, P. C. Phonons in carbon nanotubes. Advances in Physics 49, 705 (2000).
    [13] Gomer, R. Field emission and eld ionization (American Institute of Physics, New York, 1993).
    [14] Fowler, R. H. & Nordheim, D. L. Electron emission in intense electricelds. Proc. R. Soc. A229, 173 (1928).
    [15] Brodie, I. & Schwoebel, P. Field Emission in Vacuum Microelectronics (Kluwer Academic and Plenum Publishers, 2005).
    [16] corrected value of function t(y). http://www.pulsedpower.net/ .
    [17] pon Shei, Y. Studies of carbon nanotubes synthesized by vapor-phase catalyst and its electron eld emission illumination. Master's thesis, Chung Yuan University for applied physics (2003).
    [18] Burgess, R. E., Kroemer, H. & Houston, J. M. Corrected values of fowler-nordheim eld emission functions v(y) and s(y). Phys. Rev. 1(4),515 (1953).
    [19] Bonard, J. et al. Carbon nanotube films as electron eld emitters. Carbon 40, 1715 (2002).
    [20] Wang, Z. L. & Gao, R. P. In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett. 80, 5 (2002).
    [21] Sveningsson, M. et al. Raman spectroscopy and field emission properties of cvd-grown carbon-nanotube films. Appl. Phys. A 73, 409 (2001).
    [22] Jo, S. H., Tu, Y., Huang, Z. P. & and, D. L. C. E ect of length and spacing of vertically aligned carbonnanotubes on field emission properties.
    Appl. Phys. Lett. 82, 20 (2003).
    [23] Nilsson, L. et al. Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76, 2071 (2000).
    [24] Zhou, G., Duan, W. & Gu, B. Electronic structure and field-emission characteristics of open-ended single-walled carbon nanotubes. Phys. Rev. Lett. 87, 9 (2001).
    [25] Bonard, J., Dean, K. A., Coll, B. F. & Klinke, C. Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett. 89, 19 (2002).
    [26] Edgcombe, C. J. & Valdre, U. Experimental and computational study of field emission characteristics from amorphous carbon single nanotips grown by carbon contamination - i. experiments and computation. Philos. Mag. B 82, 987 (2002).
    [27] Talin, A., Dean, K. & Jaskie, J. Field emission displays: a critical review. Solid-State Electronics 45, 963 (2001).
    [28] Spindt, C. A thin-film field-emission cathode. J. Appl. Phys. 39(7), 3504 (1968).
    [29] Newspicture. http://www.fpd.edu.tw/ (2007).
    [30] Modi, A., Koratkar, N., Lass, E., Wei, B. & Ajayan, P. M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 424, 171 (2003).
    [31] Sato, K. et al. Anisotropic etching rates of single crystal. IEEE 556 (1998).
    [32] Tabata, O., Asahi, R., Funabashl, H., Shlmaoka, K. & Suglyama, S. Anisotropic etching of silicon in tmah solutions. Sensors and Actuators A. 34, 51 (1992).
    [33] Meyer, J. C., Paillet, M. & Roth, S. Single-molecule torsional pendulum. Science 309, 1539 (2005).
    [34] Peterson, K. E. Silicon as a mechanical material. IEEE 70, 420 (1982).
    [35] Kovacs, G. T. A., maluf, N. I. & Petersen, K. E. Bulk micromachining of silicon. IEEE 86-8, 1536 (1998).
    [36] wikipedia. http://en.wikipedia.org/wiki/co2 .
    [37] Lawes, G. Scanning electron microscopy and x-ray microanalysis (Wiley,London, 1987).
    [38] Chiu, P. W. & Roth, S. Transition from direct tunneling to eld emission in carbon nanotube intramolecular junctions. Appl. Phys. Lett. 92,042107 (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE