研究生: |
高子耘 Gao, Zi-Yun |
---|---|
論文名稱: |
流形上的p-拉普拉斯算子研究 A Study of p-Laplacian on Complete Manifolds |
指導教授: |
宋瓊珠
Sung, Chiung-Jue |
口試委員: |
高淑蓉
Kao, Shu-Jung 饒維明 Nhieu, Duy-Minh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 流形 、拉普拉斯 、梯度估計 |
外文關鍵詞: | manifold, Lalplacian, gradient estimate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們首先給出了拉普拉斯特徵函數梯度估計的完整證明,然後給出了p-特徵函數的銳梯度估計。最後,我們詳細證明了主特徵值達到最大值的流形結構。
In this thesis, we first give a complete proof of a gradient estimate for positive eigenfunctions of Laplacian, then we show a sharp gradient estimate for positive p-eigenfunctions. At last, we give a detailed proof of the theorem of Sung and Wang in the structure of manifolds whose principal eigenvalues achieve the maximum value.
[1] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Communications on Pure and Applied Mathematics 28.2 (1975), 201-228.
[2] P. Li and J. Wang, Complete manifolds with positive spectrum, II. Journal of Differential Geometry 62.1 (2002), 143-162.
[3] X. Wang and L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian manifolds, Communications in Analysis and Geometry 19 (2011), 759–772.
[4] C. Sung and J. Wang, Sharp gradient estimate and spectral rigidity for p -Laplacian, Mathematical Research Letters. 21 (2014), 885-904
[5] P. Li, Geometric analysis. Vol. 134. Cambridge University Press, (2012).
[6] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds. Journal of Differential Geometry, 36.2 (1992), 417-450.
[7] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature. Journal of Differential Geometry, 6.1 (1971),
119- 128.