簡易檢索 / 詳目顯示

研究生: 高子耘
Gao, Zi-Yun
論文名稱: 流形上的p-拉普拉斯算子研究
A Study of p-Laplacian on Complete Manifolds
指導教授: 宋瓊珠
Sung, Chiung-Jue
口試委員: 高淑蓉
Kao, Shu-Jung
饒維明
Nhieu, Duy-Minh
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 60
中文關鍵詞: 流形拉普拉斯梯度估計
外文關鍵詞: manifold, Lalplacian, gradient estimate
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們首先給出了拉普拉斯特徵函數梯度估計的完整證明,然後給出了p-特徵函數的銳梯度估計。最後,我們詳細證明了主特徵值達到最大值的流形結構。


    In this thesis, we first give a complete proof of a gradient estimate for positive eigenfunctions of Laplacian, then we show a sharp gradient estimate for positive p-eigenfunctions. At last, we give a detailed proof of the theorem of Sung and Wang in the structure of manifolds whose principal eigenvalues achieve the maximum value.

    1 Introduction---------------------------1 2 Preliminaries--------------------------4 3 Gradient estimates for Laplacian-------11 4 Gradient estimates for p-Laplacian-----21 5 Splitting theorems---------------------48

    [1] S. T. Yau, Harmonic functions on complete Riemannian manifolds, Communications on Pure and Applied Mathematics 28.2 (1975), 201-228.
    [2] P. Li and J. Wang, Complete manifolds with positive spectrum, II. Journal of Differential Geometry 62.1 (2002), 143-162.
    [3] X. Wang and L. Zhang, Local gradient estimate for p-harmonic functions on Riemannian manifolds, Communications in Analysis and Geometry 19 (2011), 759–772.
    [4] C. Sung and J. Wang, Sharp gradient estimate and spectral rigidity for p -Laplacian, Mathematical Research Letters. 21 (2014), 885-904
    [5] P. Li, Geometric analysis. Vol. 134. Cambridge University Press, (2012).
    [6] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds. Journal of Differential Geometry, 36.2 (1992), 417-450.
    [7] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of non-negative Ricci curvature. Journal of Differential Geometry, 6.1 (1971),
    119- 128.

    QR CODE