研究生: |
胡凱維 Hu, Kai Wei |
---|---|
論文名稱: |
具混合儲能源風力永磁同步發電機為主直流微電網之開發及操控 DEVELOPMENT AND OPERATION CONTROL OF A WIND PERMANENT-MAGNET SYNCHRONOUS GENERATOR BASED DC MICRO-GRID WITH HYBRID ENERGY STORAGE |
指導教授: |
廖聰明
Liaw, Chang Ming |
口試委員: |
黃昌圳
楊勝明 徐國鎧 江炫樟 劉靖家 鐘太郎 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 215 |
中文關鍵詞: | 微電網 、風力發電機 、永磁同步發電機 、維也納切換式整流器 、換相移位調整 、交錯式升壓轉換器 、儲能系統 、蓄電池 、超電容 、飛輪 、傾卸負載 、垂降控制 、強健控制 、預測電流控制 、單相三線式變頻器 |
外文關鍵詞: | Micro-grid, wind generator, PMSG, Vienna SMR, commutation tuning, interleaved boost converter, energy storage system, battery, flywheel, super-capacitor, dump load, droop control, robust control, predictive current control, 1P3W inverter |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在從事具混合儲能源由風力永磁同步發電機及直流電源供電直流微電網之開發及操控。直流電源經由一交錯式升壓轉換器介接至共通直流匯流排。至於風力永磁同步發電機,在比較探究多種交流-直流轉換器之降額特性後,開發一三相維也納切換式整流器將風力永磁同步發電機介接建立微電網之共通直流鏈電壓。藉由適當之換相移位調整及強健控制,增進風力發電機之產生功率特性。可擷取之直流或交流電源,亦能經由維也納切換式整流器之既有元件介接至直流微電網。
微電網中之輸入電源均係變動且不可預測,必須配裝適當之儲能緩衝增進其供電品質。於所建構之微電網,開發一含電池/超電容/飛輪之混合儲能系統,以及各儲能裝置之雙向介面轉換器。並提出垂降控制法則及適應性預測電流控制,獲得良好之能源支撐控制特性。此外,當系統能源過剩時,利用所構裝之傾卸切換電阻負載,可維持整體能量平衡。
於測試負載安排上,建構一單相三線式變頻器,提供 60Hz 220V/ 110V 交流電源供給家用負載。經所提出之強健控制,於負載及直流鏈電壓變動下,可獲得良好之正弦輸出電壓波形與動態響應。當再生能源過剩或不足時,所開發之單相三線式變頻器可執行微電網至電網及電網至微電網雙向操作。更且,微電網至電動車與電動車至微電網雙向互聯操作亦可達成。此外,各種馬達驅動系統、照明裝置及直流轉換器供電負載亦可直接由所建微電網之直流鏈供電。
This dissertation is aimed at the development and operation controls of a DC micro-grid powered by wind permanent-magnet synchronous generator (PMSG) and DC source with hybrid energy storage devices. The DC sources are interfaced to the common DC bus via an interleaved DC/DC boost converter. As to the wind PMSG, after exploring the derated characteristics of PMSG systems with various AC/DC converters, a three-phase Vienna switch-mode rectifier (SMR) is developed as its interface to establish the common DC bus voltage of DC micro-grid. Its developed power is improved by proper commutation tuning and robust controls. The possible harvested DC or AC sources can be interfaced to the DC micro-grid via the embedded circuit components of Vienna SMR.
Since the generating powers from various sources in a micro-grid are unpredictable and fluctuated, energy storage buffer is required to improve its power supplying quality. In the developed micro-grid, the battery/flywheel/super-capacitor hybrid energy storage system with bidirectional DC/DC interface converters is developed. And the droop control approach with adaptive predictive current control is proposed to yield good energy storage support control characteristics. Moreover, a chopped resistive dump load is equipped to regulate the energy balance when system energy surplus occurs.
In test load arrangement, a single-phase three-wire (1P3W) inverter is established to yield 60Hz 220V/110V AC voltages for powering the home appliances. Good sinusoidal output voltage waveforms and dynamic responses due to load and DC-bus voltage changes are obtained by the proposed robust control schemes. When the renewable energy is surplus or insufficient, the microgrid-to-grid (M2G)/grid-to-microgrid (G2M) bidirectional operations can be also conducted by the established 1P3W inverter. Moreover, the bidirectional inter-connected operations between the developed micro-grid and the electric vehicle (M2V/V2M) can also be applicable. In addition, various motor drives, lighting devices and DC converter fed loads can be directly powered from the DC bus of the established micro-grid.
REFERENCES
A. Micro-Grid and Operation Control
[1] R. H. Lasseter and P. Paigi, “Microgrid: a conceptual solution,” in Proc. IEEE PESC, 2004, pp. 4285-4290.
[2] F. Katiraei, M. Iravani, and P. W. Lehn, “Micro-grid autonomous operation during and subsequent to islanding process,” IEEE Trans. Power Del., vol. 20, no. 1, pp. 248-257, 2005.
[3] N. Hatziargyriou, H. Asano, M. Iravani, and C. Marnay, “Microgrids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
[4] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
[5] H. Hakigano, Y. Miura, T. Ise, and R. Uchida, “DC micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices,” in Proc. IEEE PESC, 2006, pp. 1-7.
[6] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007, pp. 1-6.
[7] R. S. Balog and P. T. Krein, “Bus selection in multibus DC microgrids,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 860-867, 2011.
[8] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator- based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
[9] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[10] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 673-682, 2009.
[11] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734-4749, 2012.
[12] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[13] X. Liu, P. Wang, and P. C. Loh, “A hybrid AC/DC microgrid and its coordination control,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 278-286, 2011.
[14] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[15] H. Kakigano, M. Nomura, and T. Ise, “Loss evaluation of DC distribution for residential houses compared with AC system,” in Proc. IEEE IPEC, 2010, pp. 480-486.
[16] H. Hakigano, Y. Miura, and T. Ise, “Configuration and control of a DC microgrid for residential houses,” in Proc. IEEE T&D Asia, 2009, pp. 1-4.
[17] D. J. Becker and B. J. Sonnenberg, “DC microgrids in buildings and data centers,” in Proc. IEEE INTELEC, 2011, pp. 1-7.
[18] J. Lago and L. Heldwein, “Operation and control-oriented modeling of a power converter for current balancing and stability improvement of DC active distribution networks,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 877-885, 2011.
[19] B. T. Patterson, “DC come home, DC microgrids and the birth of the Enernet,” IEEE Power Energy Mag., vol. 10, no. 6, pp. 60-69, 2012.
[20] B. K. Johnson, R. H. Lasseter, F. L. Alvarado, and R. Adapa, “Expandable multiterminal DC systems based on voltage droop,” IEEE Trans. Power Del., vol. 8, no. 4, pp. 1926-1932, 1993.
[21] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” in Proc. IEEE PESC, vol. 2, 1999, pp. 901-908.
[22] Y. Ito, Z.Q. Yang, and H. Akagi, “DC microgrid based distribution power generation system,” in Proc. IEEE IPEMC, 2004, pp. 1740-1745.
[23] H. Kakigano, Y. Miura, T. Ise, and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCCON, 2007, pp. 518-525.
[24] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuña, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, 2011.
[25] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[26] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez, and H. Lipei, “State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2804-2815, 2014.
[27] X. Lu, J. M. Guerrero, K. Sun, and J. C. Vasquez, “An improved droop control method for DC microgrids based on low bandwidth commutation with DC bus voltage restoration and enhanced current sharing accuracy,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1800-1812, 2014.
[28] M. C. Chou and C. M. Liaw, “PMSM-driven satellite reaction wheel system with adjustable DC-link voltage,” IEEE Trans. Aerosp. Electron. Syst., vol. 50, no. 2, pp. 1359-1373, 2014.
[29] S. K. Chaudhary, R. Teodorescu, P. Rodriguez, and P. C. Kjar, “Chopper controlled resistors in VSC-HVDC transmission for WPP with full-scale converters,” in Proc. IEEE SAE, 2009, pp. 1-8.
[30] B. Silva, C. L. Moreira, H. Leite, and J.A.P. Lopes, “Control strategies for AC fault ride through in multiterminal HVDC grids,” IEEE Trans. Power Del., vol. 29, no. 1, pp. 395-405, 2014.
B. Motor/Generator
[31] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[32] P. C. Sen, Principle of Electric Machines and Power Electronics, 3rd ed. Canada: Wiley John & Sons, Inc., 2014.
[33] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
[34] B. K. Bose, “Power electronics and motor drives recent progress and perspective,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp. 581-588, 2009.
[35] C. S. Lin, D. S. Jung, K. C. Kim, Y. D. Chun, H. W. Lee, and J. Lee, “A study on improvement magnetic torque characteristics of IPMSM for direct drive washing machine,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2811-2814, 2009.
[36] M. Melfi, S. Evon, and R. McElveen, “Induction versus permanent magnet motors,” IEEE Ind. Appl. Mag., vol. 15, no. 6, pp. 28-35, 2009.
[37] G. Pellegrino, A. Vagati, B. Boazzo, and P. Guglielmi, “Comparison of induction and PM synchronous motor drives for EV application including design examples,” IEEE Trans. Ind. Appl., vol.48, no. 6, pp.2322-2332, 2012.
[38] T. Marcic, B. Stumberger, and G. Stumberger, “Comparison of induction motor and line-start IPM synchronous motor performance in a variable-speed drive,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2341-2352, 2012.
[39] P. E. Kakosimos, A. G. Sarigiannidis, M. E. Beniakar, A. G. Kladas, and C. Gerada, “Induction motors versus permanent-magnet actuators for aerospace applications,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4315-4325, 2014.
[40] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
[41] F. Parasiliti, M. Villani, and M. Castello, “PM brushless DC motor with exterior rotor for high efficiency household appliances,” in Proc. IEEE ICEM, Sept. 2014, pp. 623-628.
[42] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, 2007.
[43] L. Parsa and H. A. Toliyat, “Fault-tolerant interior-permanent-magnet machines for hybrid electric vehicle applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1546-1552, 2007.
[44] K. Kamiev, J. Montonen, M. P. Ragavendra, J. Pyrthonen, J. A. Tapia, and M. Niemela, “Design principles of permanent magnet synchronous machines for parallel hybrid or traction applications,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4881-4890, 2013.
[45] W. Wang, H. Hofmann, and C. E. Bakis, “Ultrahigh speed permanent magnet motor/generator for aerospace flywheel energy storage applications,” in Proc. IEEE IEMDC, May 2005, pp. 1494-1500.
[46] M. I. Daoud, A. S. Abdel-Khalik, A. Massoud, S. Ahmed, and N. H. Abbasy, “On the development of flywheel storage systems for power system applications: survey,” in Proc. IEEE ICEM, Sept. 2012, pp. 2119-2125.
[47] K. Nishida, T. Ahmed, and M. Nakaoka, “Development of grid-connected wind energy system employing interior PM synchronous generator and multi-pulse rectifier,” in Proc. IEEE ECCE, Sept. 2010, pp. 3374-3381.
[48] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent magnet synchronous generator-based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, Oct. 2011.
[49] H. Geng, G. Yang, D. Xu, and B. Wu, “Unified power control for PMSG-based WECS operating under different grid conditions,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 822-830, 2011.
[50] W. Gruber, T. Hinterdorfer, H. Sima, A. Schulz, and J. Wassermann, “Comparison of different motor-generator sets for long term storage flywheels,” in Proc. IEEE SPEEDAM, June 2014, pp. 18-20.
[51] H. Akagi and H. Sato, “Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 109-116, 2002.
[52] S. Kato, M. M. Cheng, H. Sumitani, and R. Shimada, “Semiconductor power converterless voltage sag compensator and UPS using a flywheel induction motor and an engine generator,” in Proc. IEEE PCC’07, April 2007, pp. 1680-1685.
[53] G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 526-534, 2010.
[54] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[55] P. Gamboa, S. F. Pinto, J. F. Silva, and E. Margato, “A flywheel energy storage system with matrix converter controlled permanent magnet synchronous motor,” in Proc. IEEE ICEM, Sept. 2008, pp. 1-5.
[56] J. I. Itoh, D. Sato, T. Nagano, K. Tanaka, N. Yamada, and K. Sato, “Development of high efficiency flywheel energy storage system for power load-leveling,” in Proc. IEEE INTELEC, Oct. 2014, pp. 1-8.
[57] A. S. Nagorny, N. V. Dravid, R. H. Jansen, and B. H. Kenny, “Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications,” in Proc. IEEE IEMDC, May 2005, pp. 635-641.
[58] M. Jiang, J. Salmon, and A. M. Knight, “Design of a permanent magnet synchronous machine for a flywheel energy storage system within a hybrid electric vehicle,” in Proc. IEEE IEMDC, May 2009, pp. 1736-1742.
[59] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
[60] N. Urasaki, T. Senjyu, and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 41-47, 2003.
[61] S. Yamamoto, T. Kano, Y. Yamaguchi, and T. Ara, “A method to determine direct- and quadrature-axis inductances of permanent magnet synchronous motors,” IEEJ Trans. Elect. Elctron. Eng., vol. 171, no. 3, pp. 910-918, 2010.
[62] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 56-63.
[63] M. N. Uddin, T. S. Radwan, G. H. George, and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[64] T. D. Batzel and K. Y. Lee, “Electric propulsion with sensorless permanent magnet synchronous motor: implementation and performance,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 575-583, 2005.
[65] M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of- freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
[66] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[67] H. Lin, T. A. Lipo, B. I. Kwon, and S. R. Cheon, “Three-level hysteresis current control for a three-phase permanent magnet synchronous motor drive,” in Proc. IEEE IPEMC, June 2012, pp. 1004-1008.
[68] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
[69] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
[70] T. Geyer, “A comparison of control and modulation schemes for medium-voltage drives: emerging predictive control concepts versus PWM-based schemes,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1380-1389, 2011.
[71] S. Kar and S. K. Mishra, “Direct torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
[72] J. S. Lee, R. D. Lorenz, and M. A. Valenzuela, “Time-optimal and loss-minimizing deadbeat-direct torque and flux control for interior permanent-magnet synchronous machines,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1880-1890, 2014.
[73] T. Inoue, Y. Inoue, and S. Morimoto, “A novel method of maximum torque per ampere control for a direct torque-controlled PMSM in a stator flux-linkage synchronous frame,” in Proc. IEEE ECCE, 2014, pp. 5108-5115.
[74] M. Kadjoudj, A. Golea, N. Golea, and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
[75] M. Morawiec, “The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter,” IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 1047-1055, 2013.
[76] A. Maamoun, Y. M. Alsayed, and A. Shaltout, “Fuzzy logic based speed controller for permanent-magnet synchronous motor drive,” in Proc. IEEE ICMA, 2013, pp. 1518-1522.
[77] F. F. M. El-Sousy, “Intelligent optimal recurrent wavelet Elman neural network control system for permanent-magnet synchronous motor servo drive,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1986-2003, 2013.
[78] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 1007-1015, 2013.
[79] S. Heier, Grid integration of wind energy conversion systems, 2nd Ed., John Wiley & Sons Ltd, New York, 1998.
[80] T. Ackermann, Wind power in power systems, John Wiley & Sons Ltd, New York, 2005.
[81] V. Yaramasu, B. Wu, P. C. Sen, S. Kouro, and M. Narimani, “High-power wind energy conversion systems: State-of-art and emerging technologies,” Proc. IEEE, vol. 103, no. 5, pp. 740-788, 2015.
[82] J. A. Baroudi, V. Dinavahi, and A. M. Knight, “A review of power converter topologies for wind generators,” in Proc. IEEE IEMDC, 2005, pp. 458-465.
[83] H. Polinder, F. F. A. van der Pijl, G. J. de Vilder, and P. J. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 725-733, 2006.
[84] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
[85] M. Heydari, A. Y. Varjani, M. Mohamadian, and H. Zahedi, “A novel variable-speed wind energy system using permanent-magnet synchronous generator and nine-switch AC/AC converter,” in Proc. IEEE PEDSTC., pp. 5-9, 2010.
[86] A. Rajaei, M. Mohamadian, and A. Yazdian, “A new high frequency grid interface system for PMSG-based wind turbine generators in low power applications,” in Proc. IEEE IECON., pp. 3510-3515, 2012.
[87] T. Nakamura, S. Morimoto, M. Sanada, and Y. Takeda, “Optimum control of IPMSG for wind generation system,” in Proc. IEEE PCC-Osaka, 2002, pp. 1435-1440.
[88] M. G. Molina, A. G. Sanchez, and A. M. Rizzato-Lede, “Dynamic modeling of wind farms with variable-speed direct-driven PMSG wind turbines,” in Proc. IEEE/PES Transm. Distrib. Conf. Expo: Latin America (T&D-LA), 2010, pp. 816-823.
[89] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2325-2337, 2012.
[90] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, Sept. 2015.
C. Switch-Mode Rectifier
[91] IEEE, IEEE-Std. 519-2014, Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Std.
[92] “Electromagnetic compatibility (EMC) - Part 3: Limits - Section 2: Limits for harmonic current emissions,” IEC 1000-3-2 Document, 1st ed., 1995.
[93] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[94] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[95] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[96] E. J. Rikos, E.C. Tatakis, “Single-stage single-switch isolated PFC converter with non-dissipative clamping,” IEE Proc. Electr. Power Appl., vol. 152, no. 2, pp. 166- 174, 2005.
[97] B. Singh, B. P. Singh, and S. Dwivedi, “Performance comparison of high frequency isolated AC-DC converters for power quality improvement at input AC mains,” in Proc. IEEE PEDES, 2006, pp. 1-6.
[98] A. Uan-Zo-li, F. C. Lee, and R. Burgos, “Modeling, analysis and control design of single-stage voltage source PFC converter,” in Proc. IEEE IAS, 2005, vol. 3, pp. 1684-1691.
[99] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch-mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
[100] P. Chaudhary and P. Sensarma, “Front-end buck rectifier with reduced filter size and single-loop control,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4359-4368, 2013.
[101] P. Wolf and P. Thomas, “Boost rectifier power factor correction circuits with improved harmonic and load voltage regulation responses,” in Proc. IEEE PESC, 2007, pp. 1314-1318.
[102] U. Kamnarn and V. Chunkag, “Analysis and design of a modular three-phase AC-to-DC converter using CUK rectifier module with nearly unity power factor and fast dynamic response,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 2000-2012, 2009.
[103] Y. S. Roh, Y. J. Moon, J. Park, and C. Yoo, “A two-phase interleaved power factor correction boost converter with a variation-tolerant phase shifting technique,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 1032-1040, 2014.
[104] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[105] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[106] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[107] R. Tonkski, L. A. C. Lopes, and F. Dos Reis, “A single-switch three-phase boost rectifier to reduce the generator losses in wind energy conversion systems,” in Proc. IEEE EPEC, 2009, pp. 1-8.
[108] J. Hui, A. Bakhshai, and P. K. Jain, “Control and modeling of a wind energy system with a three-phase DCM boost converter and a sensorless maximum point power tracking method,” in Proc. IEEE/PES Transm. Distrib. Conf. Expo., 2012, pp. 1-7.
[109] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[110] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[111] R. Burgos, R. Lai, Y. Pei, F. Wang, D, Boroyevich, and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two- and three- level converters: a carrier based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, 2008.
[112] T. Jin, L. Li, and K. M. Smedley, “A universal vector controlled for four-quadrant three-phase power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 377-390, 2007.
[113] R. Zhang, V. H. Prasad, D. Boroyevich, and F. C. Lee, “Three-dimensional space vector modulation for four-leg voltage-source converters,” IEEE Trans. Power Electron., vol. 17, no. 3, pp. 2772-2785, 2002.
[114] C. R. Baier, J. R. Espinoza, J. A. Munozm, L. A. Moran, and P. E. Melin, “A high performance multicell topology based on single-phase power cells for three-phase systems operating under unbalanced AC mains and asymmetrical loads,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2730-2738, 2010.
[115] V. Caliskan, D. J. Perreault, T. M. Jahns, and J. G. Kassakian, “Analysis of three-phase rectifiers with constant-voltage loads,” IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., vol. 50, no. 9, pp. 1220-1126, 2003.
[116] M. Liserre, R. Cardenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, 2011.
[117] H. Chen and D. C. Aliprantis, “Analysis of squirrel-cage induction generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 967-975, 2011.
[118] A. Rajaei, M. Mohamadian, and A. Yazdian, “Vienna-rectifier-based direct torque control of PMSG for wind energy application,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2919-2929, 2013.
[119] H. Chen, N. David, and D. C. Aliprantis, “Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system,” IEEE Trans. Sustain. Energy, vol. 4, no. 1, pp. 154-163, 2013.
D. DC-DC Interface Converter
[120] A. S. Samosir, M. Anwari, and A. H. M. Yatim, “Dynamic evolution control of interleaved boost DC-DC converter for fuel cell application,” in Proc. IEEE IPEC., pp. 869-874, 2010.
[121] H. Kosai, S. Mcneal, B. Jordan, J. Scofield, B. Ray, and Z. Turgut, “Coupled inductor characterization for a high performance interleaved boost converter,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4812-4815, 2009.
[122] H. Kim, M. Falahi, T.M. Jahns, and M. Degner, “Inductor current measurement and regulation using a single DC link current sensor for interleaved DC-DC converters,” IEEE Trans. Power Electronics, vol. 26, no. 5, pp. 1503-1510, 2011.
[123] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE VPPC, pp. 552-555, 2005.
[124] Z. Qian, O. Abdel-Rahman, and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877-1887, 2010.
[125] F. Caricchi, F. Crescimbini, F. G. Capponi, and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, pp. 287-293, 1998.
[126] M. Cacciato, F. Caricchi, F. Giuhlii, and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, vol. 2, no.2, pp. 1127-1133, 2004.
[127] C. Zhao, S. D. Round, and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008.
[128] A. A. Fardoun, E. H. Ismail, A.J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. IEEE ECCE, 2011, pp. 3322-3329.
[129] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[130] M. A. Khan, I. Husain, and Y. Sozer, “A bidirectional DC-DC converter with overlapping input and output voltage ranges and vehicle to grid energy transfer capability,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 507-516, 2014.
E. Energy Storage System
[131] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[132] M. J. Erickson and R. H. Lasseter, “Integration of battery energy storage element in a CERTS microgrid,” in Proc. IEEE ECCE, 2010, pp. 2570-2577.
[133] A. Esmaili and A. Nasiri, “Evaluation of impact of energy storage on effective load carrying capability of wind energy,” in Proc. IEEE ECCE, 2012, pp. 3735-3740.
[134] A. Khatamianfar, M. Khalid, A. V. Savkin, and V. G. Agelidis, “Improving wind farm dispatch in the Australian electricity market with battery energy storage using model predictive control,” IEEE Trans. Sustain Energy, vol. 4, no. 3, pp. 745-755, 2013.
[135] A. Kusko and J. DeDad, “Stored energy- short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
[136] H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, and A. M. Khambadkone, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923-930, 2011.
[137] M. U. Usama, D. Kelle, and T. Baldwin, “Utilizing spinning reserves as energy storage for renewable energy integration,” in Proc. IEEE PSC, 2014, pp. 1-5.
[138] B. Parkhideh, J. Zeng, S. Baek, S. Bhattacharya, M. Baran, and A. Q. Huang, “Improved wind farm’s power availability by battery energy storage systems: modeling and control,” in Proc. IEEE IECON, pp. 784-789, 2008.
[139] R. Yokoyama, Y. Hida, K. Koyanagi, and K. Iba, “The role of battery systems and expandable distribution networks for smarter grid,” in Proc. IEEE PESGM, pp. 1-6, 2011.
[140] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[141] K. Mackey, R. McCann, K. Rahman, and R. Winkelman, “Evaluation of a battery energy storage system for coordination of demand response and renewable energy resources,” in Proc. IEEE PEDS, pp. 1-8, 2013.
[142] M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
[143] P. Thounthong, S. Rael, and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009.
[144] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
[145] L. Ran, D. Xiang, and J. L. Kirtley, “Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine,” in Proc. IEEE IAS, 2010, pp. 1-8.
[146] R. Pena-Alzola, R. Sebastian, J. Quesada, and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE PowerEng., 2011, pp. 1-6.
[147] S. Nomura, Y. Ohata, T. Hagita, H. Tsutsui, S. Tsuji-lio, and R. Shimada, “Wind farms linked by SMES systems,” IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 1951-1954, 2005.
[148] M. R. I. Sheikh, S. M. Muyeen, R. Takahashi, and J. Tamura, “Smoothing control of wind generator output fluctuations by using superconducting magnetic energy storage unit,” in Proc. IEEE ICEMS, 2009, pp. 1-6.
[149] S. J. Kazempour, M. Hosseinpour, and M. P. Moghaddam, “Self-scheduling of a joint hydro and pumped-storage plants in energy, spinning reserve and regulation markets,” in Proc. IEEE PES, 2009, pp. 1-8.
[150] D. J. Swider, “Compressed air energy storage in an electricity system with significant wind power generation,” IEEE Trans. Energy Convers., vol. 22, no. 1, pp. 95-102, 2007.
[151] L. Zhihao, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC., pp. 591-596, 2009.
[152] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944-953, 2014.
[153] K. W. Hu, P. H. Yi and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[154] G. O. Suvire, M. G. Molina, and P. E. Mercado, “Improving the integration of wind power generation into AC microgrids using flywheel energy storage,” IEEE Trans. Smart Grid, vol. 3, no.4, pp. 1945-1954, 2012.
[155] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid, ” in Proc. IEEE IFEEC, 2013, pp. 119-125.
F. Inverter
[156] J. Sakly, P. Delarue, and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4, pp. 65-70.
[157] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[158] P. A. Dahono, A. Purwadi, and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. PEDS, 1995, vol. 2, pp. 571-576.
[159] H. Kim and K.H. Kim, “Filter design for grid connected PV inverters,” in Proc. ICSET, 2008, pp.1070-1075.
[160] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664.
[161] H. Deng, R. Oruganti, and D. Srinivasan, “A simple control method for high-performance UPS inverters through output-impedance reduction,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 888-898, 2008.
[162] T. C. Y. Wang, Y. Zhihong, S. Gautam, and Y. Xiaoming, “Output filter design for a grid-interconnected three-phase inverter,” in Proc. IEEE PESC, 2003, vol. 2, pp. 779-784.
[163] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[164] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IET Elect. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[165] N. Stretch and M. Kazerani, “A stand-alone, split-phase current-source inverter with novel energy storage,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2766-2774, 2008.
[166] Y. Kobayashi and H. Funato, “Current control method based on hysteresis control suitable for single-phase active filter with LC output filter,” in Proc. EPE-PEMC, pp. 479-484, 2008.
[167] R. Ramchand, K. Sivakumar, A. Das, C. Patel, and K. Gopakumar, “Improved switching frequency variation control of hysteresis controlled voltage source inverter-fed IM drives using current error space vector,” IET Proc. Power Elect., vol. 3, no. 2, pp. 219-231, 2010.
[168] R. Gupta, “Generalized frequency domain formulation of the switching frequency for hysteresis current controlled VSI used for load compensation,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2526-2535, 2012.
[169] D. G. Holmes, R. Davoodnezhad, and B. P. McGrath, “An improved three-phase variable-band hysteresis current regulator,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 441-450, 2013.
[170] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey, and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. IEEE PESC, vol. 2, pp. 17-21, 2001.
[171] J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, and P. Lezana, “Predictive current control of voltage source inverter,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, 2007.
[172] F. Barrero, M. R. Arahal, R. Gregor, S. Toral, and M. J. Duran, “One-step modulation predictive current control method for the asymmetrical dual three-phase induction machine,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 1974-1983, 2009.
[173] M. Rivera, V. Yaramasu, A. Llor, J. Rodriguez, B. Wu, and M. Fadel, “Digital predictive current control of a three-phase four-leg inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4903-4912, 2013.
[174] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., accepted, 2015.
G. Others
[175] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 3rd ed., Boston: Addison-Wesley, 1997.
[176] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall PTR, 1998.
[177] “TMS320F28335 digital signal controllers (DSCs) data manual,” Available: http://www.ti.com/lit/ds/symlink/tms320f28335.pdf, 2015,06,08.
[178] K. W. Hu, and C. M. Liaw, “On a synchronous-reluctance motor speed drive with intuitive commutation tuning,” in Proc. IEEE ICPE ECCE-Asia, 2015, pp. 1623-1630.