簡易檢索 / 詳目顯示

研究生: 賴威丞
Lai, Wei-Cheng
論文名稱: 模組化多階層轉換器直流微電網整合研究
DC-Microgrid Integrated Research on Modular Multilevel Converters
指導教授: 吳財福
Wu, Tsai-Fu
口試委員: 潘晴財
Pan, Ching-Tsai
林景源
Lin, Jing-Yuan
張淵智
Chang, Yuan-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 分切合整數位控制交錯式脈衝寬度調變模組化多階層雙向轉換器
外文關鍵詞: D-Σ digital control law, Interleaved PWM, Modular multilevel converter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要在於研製由分切合整數位控制法所實現的三相三線模組化多階層雙向轉換器,並利用此轉換器參與直流微電網整合系統研究,與再生能源發電、儲能、電力品質提升以及保護協調等子系統共同整合測試,實現直流微電網的能源轉換系統。
    分切合整數位控制法的特點,在於可以將電感值隨著電流大小變化的特性納入參數考量,在相同的電流下與傳統控制法相比,分切合整控制法可以得到較小的電感體積。藉由此控制法,微控制器可以精準的算出相應的責任比率,再經由交錯式脈衝寬度調變方法,以達到降低電流漣波的效果。本文的整合型研究,其目標在於先以低額定功率的系統驗證所開發的核心技術,再與各子系統進行整合測試,最後提出改善方案,建立開發平台,為下個階段的中壓、大功率電網系統佈局。
    本研究的主要貢獻包含以下幾點。第一點為採用分切合整數位控制法,不僅可以將電感值變化納入考量,也可以藉由此控制法得到模組電容電壓表示式,再藉由此表示式計算出可以有效抑制電容電壓漣波的諧波補償電流。第二點為採用多階層架構實現高壓直流傳輸,利用模組串接,可以有效的提高直流鏈電壓,如此一來在遠距離的直流微電網傳輸過程中,可以選擇較細的傳輸導線。第三點為將模組化多階層轉換器、充放電系統、電子斷路器系統以及靜態同步補償系統整合為一個直流微電網能源轉換系統,在市電、太陽能源以及電池儲能系統三種電能之間完成穩定且有效率的能源配置。


    This research designs and implements three-phase three-wire modular multilevel converter (MMC) based on division-summation (D-Σ) digital control law. This converter is integrated into a grid-connected high-power system. The integrated system includes renewable power generation, energy storage, power quality improvement and protection mechanism, achieving a DC-microgrid converter system.
    The D-Σ digital control law can take into account inductance variation with its current. Compared with traditional control approaches, the D-Σ digital control method can adopt a smaller core under the same current value. The used microcontroller (RX63T) can precisely achieve current tracking control which through interleaved PWM can reduce current ripples. The integrated research is to design and implement scale-down power modules, and then focus on integration test. Finally, it is prepared for a test with medium-voltage and high-power rating.
    There are several major contributions in this research. The first one is to use D-Σ digital control law. It can not only consider inductance variation in current tracking, but also derive cell voltage expression from the control law. We can use the voltage expression to calculate the compensation current which can reduce cell voltage ripple. Secondly, we adopt a MMC to improve high voltage transmission. Thinner wires can be selected for long-distance transmission. Thirdly, MMC, Charger/Discharger, MPPT, Electronic Breaker and STATCOM are integrated to the DC-microgrid conversion system, achieving a stable and efficient energy distribution among grid, solar and battery storage systems.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.2.1 多階層轉換器拓樸架構 2 1.2.2 模組化多階層轉換器 4 1.3論文大綱 7 第二章 轉換器架構與動作原理 8 2.1轉換器系統架構 8 2.2模組電路架構及動作原理 9 2.2.1模組電路架構 9 2.2.2模組電路動作原理 9 2.3電流追蹤控制 11 2.3.1分切合整數位控制 11 2.3.2開關切換時序圖 14 2.3.3上臂迴路電流追蹤控制法則 15 2.3.4下臂迴路電流追蹤控制法則 22 2.3.5電流命令的抉擇 28 2.4開關訊號調變 29 第三章 穩壓控制與均流控制 31 3.1直流鏈穩壓控制 31 3.2三相均流控制 33 3.3模組穩壓控制 33 3.3.1模組穩壓 33 3.3.2模組電容電壓表示式 36 3.3.3抑制模組電容電壓漣波 37 第四章 系統整合與通訊介面 38 4.1系統整合 38 4.1.1系統架構 38 4.1.2相關系統介紹 39 4.1.3整合測試流程 43 4.2通訊介面 45 4.2.1通訊介面種類介紹 45 4.2.2整合系統通訊網路架構 50 4.2.3通訊流程 51 4.2.4通訊網路實測波型 53 第五章 周邊電路設計 55 5.1輔助電路 55 5.1.1返馳式轉換器 56 5.1.2 UC3843 PWM控制核心 56 5.2 輔助電源自我檢測 57 5.3 開關驅動電路 59 5.4 模組電壓回授電路 60 5.5 直流鏈電壓回授電路 61 5.6 市電電壓回授電路 62 5.7 電流回授電路 63 5.8 硬體保護電路 64 5.9 緊急停止開關電路 65 5.10串列傳輸電路 65 5.11 CAN BUS通訊介面電路 66 第六章 韌體規劃 68 6.1微控制器介紹 68 6.1.1 RX63T 68 6.1.2 RX62T 69 6.2程式流程 73 6.2.1 主程式流程 73 6.2.2 A/D中斷副程式流程 74 6.2.3保護副程式 78 6.2.4 直流鏈穩壓副程式 79 第七章 模擬與實作驗證 81 7.1電氣規格 81 7.2 實務考量 82 7.2.1 開關選擇及特性 82 7.2.2 電感值變化 83 7.2.3 開關死區配置 84 7.2.4 通訊異常 85 7.3 模擬與實作 86 7.3.1 整流模式模擬與實作結果 86 7.3.2 抑制模組電容電壓漣波實作結果 91 7.3.3 直流微電網系統整合實作結果 92 第八章 結論與未來研究方向 97 8.1結論 97 8.2未來研究方向 98 8.2.1採用LCL濾波器 98 8.2.2提升整合系統研究規格 98 參考文獻 99

    [1] A. Lesnicar and R. Marquardt, "An innovative modular multilevel converter topology suitable for a wide power range,"in Proc. 2003 IEEE Bologna Power Tech Conference Proceedings, Bologna, Italy, 2003, pp. 6 pp. vol.3-.
    [2] Z. Shu, M. Liu, L. Zhao, S. Song, Q. Zhou and X. He, "Predictive harmonic control and its optimal digital implementation for MMC-based active power filter," IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5244-5254, Aug. 2016.
    [3] T. Isobe, L. Zhang, R. Iijima, H. Tadano, Y. Kawanami, and K. Terazono, "Experimental verification of capacitance reduction in MMC-based STATCOM,"in Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, 2016, pp. 1-7.
    [4] G. Tsolaridis, E. Kontos, H. Parikh, R. M. Sanchez-Loeches, R. Teodorescu, and S. K. Chaudhary, "Control of a modular multilevel converter STATCOM under internal and external unbalances,"in Proc. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 6494-6499.
    [5] A. E. Leon and S. J. Amodeo, "Energy balancing improvement of modular multilevel converters under unbalanced grid conditions," IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6628-6637, Aug. 2017.
    [6] T. Nakanishi, K. Orikawa and J. Itoh, "Modular multilevel converter for wind power generation system connected to micro-grid," in Proc. 2014 International Conference on Renewable Energy Research and Application (ICRERA), 2014, pp. 653-658.
    [7] E. Behrouzian, M. Bongiorno and H. Z. De La Parra, "An overview of multilevel converter topologies for grid connected applications,"in Proc. 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10.
    [8] J.-S. Lai and F. Z. Peng, "Multilevel converters-a new breed of power converters," IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, May-June 1996.
    [9] H. Akagi, "Classification, terminology, and application of the modular multilevel cascade converter (MMCC)," IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3119-3130, Nov. 2011.
    [10] J. I. Y. Ota, Y. Shibano and H. Akagi, "Low-voltage-ride-through (LVRT) capability of a phase-shifted-PWM STATCOM using the modular multilevel cascade converter based on single-star bridge-cells (MMCC-SSBC)," in Proc. 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 3062-3069.
    [11] J. I. Y. Ota, T. Sato and H. Akagi, "Enhancement of performance, availability, and flexibility of a battery energy storage system based on a modular multilevel cascaded converter (MMCC-SSBC)," IEEE Transactions on Power Electronics, vol. 31, no. 4, pp. 2791-2799, April 2016.
    [12] L. Maharjan, T. Tajyuta, A. Suzuki, A. Toba, Y. Matsumoto, and H. Akagi, "Control of a transformerless STATCOM based on the MMCC-SDBC (modular multilevel cascade converter — single-delta bridge-cells),"in Proc. 2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe), 2017, pp. P.1-P.9.
    [13] A. Hillers and J. Biela, "Increased efficiency and reduced realization effort of DSBC and DSCC modular multilevel converters (MMCs),"in Proc. 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), 2018, pp. 1896-1903.
    [14] M. Hagiwara, R. Maeda and H. Akagi, "control and analysis of the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)," IEEE Transactions on Power Electronics, vol. 26, no. 6, pp. 1649-1658, June 2011.
    [15] I. R. F. M. P. da Silva, C. Brandão Jacobina and A. C. Oliveira, "Single-phase ac–ac double-star chopper cells (DSCC) converter without common dc-link capacitor," IEEE Transactions on Industry Applications, vol. 51, no. 6, pp. 4642-4652, Nov.-Dec. 2015.
    [16] G. S. Konstantinou and V. G. Agelidis, "Performance evaluation of half-bridge cascaded multilevel converters operated with multicarrier sinusoidal PWM techniques,"in Proc. 2009 4th IEEE Conference on Industrial Electronics and Applications, 2009, pp. 3399-3404.
    [17] A. M. Hava, R. J. Kerkman and T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999.
    [18] 吳財福,併網系統之多階層多功能電力調節器研製,併網型大功率轉換系統研究報告,2019年01月
    [19] 鄭博泰,併網系統之多階層STATCOM及電力品質補償研究,併網型大功率轉換系統研究報告,2019年01月
    [20] 朱慶隆,微電網系統之電子斷路器研製,併網型大功率轉換系統研究報告,2019年01月
    [21] 陳裕愷,太陽能發電系統之多階層最大功率追蹤器與雲端診斷系統研製,併網型大功率轉換系統研究報告,2019年01月
    [22] 林景源,併網系統雙向充放電器研製,併網型大功率轉換系統研究報告,2019年01月
    [23] Neelima Chaurasia,工業和汽車應用中多種串列匯流排特性及比較,2004年05月。網站: https://archive.eettaiwan.com/www.eettaiwan.com/ART_8800336214_876045_TA_d2639836.HTM?fbclid=IwAR1WK79WBGde5QJxTz2WD6XnoBb6LYoS1cy-VQrBXwhxdCg1GKkMBbUt7HU
    [24] UC3843 Group Datasheet, Fairchild, 2002.
    [25] RX63T Group datasheet Rev. 2.00, Renesas, 2013.
    [26] RX62T Group datasheet Rev. 2.00, Renesas, 2013.
    [27] 鄧元銘,CAN網路同步應用協定之設計與實現,國立交通大學電機與控制工程學系碩士論文,2007年7月。

    QR CODE