研究生: |
黃新富 Huang, Shin-Fu |
---|---|
論文名稱: |
利用T型微帶線的結構共振與鐵磁共振探討鎳鐵合金Ni80Fe20薄膜的電磁特性 The observation of electric and magnetic properties of Ni80Fe20 films from the coexistence of microstrip and ferromagnetic resonance for a T-type microstrip |
指導教授: |
呂助增
Lue, Juh-Tzeng 羅光耀 Lo, Kuang-Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 微波 、微帶線 、鐵磁共振 |
外文關鍵詞: | microwave, microstrip, FMR |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究中主要探討鎳鐵合金微帶線的結構共振與鐵磁共振交互作用的效應。對一般的直線型共振腔而言,產生能量耦合的air-gaps之輸入及輸出端在高頻的時候會產生很大的幅射損耗,為了解決上述問題,我們使用T型微帶共振腔,並提出一種新穎的方法來測量磁性材料的飽和磁化強度和磁性薄膜的電磁特性。高頻阻抗匹配方面,我們使用ADS軟體先進行模擬,找尋適合的微帶線參數,再以微影及濺鍍方式製作微帶線;利用網路分析儀HP 8722D對T型微帶共振腔作S參數量測,並且觀察外加磁場對S參數造成的變化。當外加磁場增加時,共振頻率點會先上升再下降;另外,共振頻率也會先往高頻處移動再往低頻處移動。共振頻率點的變化量大約為5~7dB,而頻率的偏移大約 0.3GHz。透過T型微帶共振腔其外加磁場和鐵磁共振頻率的關係,擬合出薄膜的飽和強化磁場Ms約為1.57Tesla;利用微帶線損耗修正公式,計算出導電率為1.4x106 S/m。為了驗證其量測飽和磁化強度及導電率的準確性,配合超導量子干涉磁量儀(SQUID)量測薄膜磁滯曲線,計算出飽合磁化強度約為1.39Tesla,而四點探針量測出薄膜導電率為1.66x106 S/m。這些結果顯示,利用T型微帶共振腔探討磁性薄膜電磁特性,具有便於量測、樣品體積小,及低成本的優點。
第一章
[1]David K. Cheng ‘Field and Wave Electromagnetics’2/e 李永勳譯
第二章
[1]Roger P. Owens, James E.Aitken and Terence C. Edwards,‘Quasi-static characteristics of microstrip on an anisotropic sapphire substrate.’IEEE Trans. Microwave Theory Tech.,vol.MATT-24, pp.499-505
[2]E.Yamashita,‘Variational method for the analysis of microstrip-like lines.’,ibid.,1968, MATT-16, pp.529-535
[3]R.Crampagne, M.Ahmadpanah and J.Guiraud,‘A simple method for detering the green's function for large class of MIC lines having multilayered dielectric structures.’IEEE Trans. Microwave Theory Tech., vol.MATT-26, pp82-87,Feb 1978.
[4]M. Kobayashi,‘A dispersion formula satisfying recent requirements in microstrip CAD.’IEEE Trans. Microwave Theory Tech.,vol.36,pp1246-1250
[5]孫又予,‘微波電路學’國立編譯館,1992
[6] A.K. Verma, Nasimuddin and E.K. Sharma,‘Analysis and circuit model of multilayer semiconductor slow-wave microstrip line.’IEE Proc.- Microw. Antennas Propag., Vol. 151, No. 5, October 2004
[7]E. Hammerstand and O. Jensen,‘Accurate models for microstrip computer aided design.’IEEE MTTS,Int. Microw. Symp. Dig., 1980,pp.407-409
[8]K.-P. , M. Kettunen, Juha-Pekka , and P.Silventoinen,‘A review of microstrip T-resonator method in determining the diekectric properties of printed circuit board materials.’IEEE Transactions on instrumentation and measurement, vol. 56 pp.1845-1850
[9]T.C.Edwards,‘Foundations for microstrip circuit design’New York:John Wiley&sons,1983
[10]L. Lewen, ‘Spurious radiation from microstrip.’Proc. Inst. Elect. Eng., vol. 125,no. 7,pp.633-642,Jul.1978
第三章
[1]D.Pozar,‘Microwave Engineering’reading MA:Addison-Wesley,1990
[2]G.Gonzalez,‘Microwave transistor Amplifiers Analysis and Design’Prentice Hall,1997
[3]J.Carroll, M. Li and K. Chang,‘New technique to measure transmission line attenuation.’IEEE Trans. Microw. Theory Tech., vol. 43, no. 1,pp. 219-222,Jan. 1995
第四章
[1]宛德福、馬興隆 “磁性物理學” 電子科技大學出版社 (1994) p74~77
[2] C.Kittel “Introduction to Solid State Physics Ch15”
[3]宛德福、馬興隆 “磁性物理學” 電子科技大學出版社 (1994) p213~226
[4]宛德福、馬興隆 “磁性物理學” 電子科技大學出版社 (1994) p223~226
[5]王正品、張路、要正宏 主編 “金屬功能材料” 化學工業出版社,p131~133
[6]Soshin Chikazumi著 張煦、李學養合譯 “磁性物理學” 聯經出版社事業公司 p463~467
[7]宛德福、馬興隆 “磁性物理學” 電子科技大學出版社 (1994) p219~223
[8]宛德福、馬興隆 “磁性物理學” 電子科技大學出版社 (1994) p284~292
[9]Soshin Chikazumi著 張煦、李學養合譯 “磁性物理學” 聯經出版社事業公司 p137~139
[10]Nicola A. Spaldin, Magnetic Materials: Fundamentals and Device Applications. Cambridge University Press, (2003).
[11]B.D. Cullity, Introduction to Magnetic Materials. Addison-Wesley, (1972).
[12]Soshin Chikazumi著 張煦、李學養合譯 “磁性物理學” 聯經出版社事業公司 p143~146
[13].Soshin Chikazumi , “Physics of Magneticm” ,English editor Stanley H. Charap , (1966),Chapter7 , pp138
[14]Robert Eisberg原著, ‘Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles’, 單溥…等譯, 復漢出版社,台南,1988,pp. 329-343.
[15] Kittel原著, ‘Introduction to Solid State Physics’, 洪連輝…等譯, 高立圖書, 台北, 1997, pp. 463-465, 549-552.
[16]Soshin Chikazumi, ‘Physics of Freeomagnetism’, Oxford, New York, 1997, pp. 11-17, 249-296.
第六章
[1]F.Giesen, J.Podbielski, T.Korn, D.Grundler, Appl. Phys. Lett.86, 10A712 (2005)
[2]Giovanni B. Stracca, ‘A simple evaluation of losses in thin microstrip’ IEEE Trans. Microwave Theory Tech.,vol.45,NO.2, pp.281-283
[3]H. Y. Lee and T. Itoh, ’Wideband conductor loss calculations of planar quasi-TEM transmission lines with thin conductors using a phenomenological loss equivalence method’in 1989 IEEE MTT-S Int. Microwave Symp. Dig., Long Beach, CA,pp.367-370
[4]T. Hiraoka, T. Tokumitsu, and M. Aikawa, ‘Very small wide-band MMIC magic using microstrip lines on thin dielectric film’ IEEE Trans. Microwave Theory Tech, Vol. MTT-37,pp.1569-1575
[5]王玟翔,清華大學物理所碩士論文,“以T形微帶共振腔及多層介質微帶線量測微波頻段下金屬薄膜導電率的變化”(2009)
[6]J. P. Nibarger, R. Lopusnik, Z. Celinski, T. J. Silva, Appl.Phys. Lett. 83, 93 (2003)
[7]D. Ravelosona , A. Cebollada , F. Briones ,et al. “Domain-wall scattering in epitaxial FePd ordered alloy films with perpendicular magnetic anisotropy” Phys. Rev. B 59, 4322 (1999)
[8]M.A. Marioni , N. Pilet , T.V. Ashworth , R.C. O’Handley , and H.J. Hug “Remanence due to Wall Magnetization and Counterintuitive Magnetometry Data in 200-nm Films of Ni” Phys. Rev. Lett. 97, 027201 (2006)
[9]L.F. Yin , D.H. Wei , N. Lei ,et al. “Magnetocrystalline Anisotropy in Permalloy Revisited” Phys. Rev. Lett. 97, 067203 (2006)