研究生: |
陳仲達 |
---|---|
論文名稱: |
雙面氮化矽鈍化網印矽晶太陽能電池之特性模擬分析 Characteristic Simulation Analysis of Bifacial Silicon Nitride Passivated Screen-Printed Silicon Solar Cells |
指導教授: | 甘炯耀 |
口試委員: |
吳德清
熊昌鉑 黃振昌 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 雙面照光 、電腦模擬 、網印太陽能電池 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於傳統型背全鋁網印太陽能電池已經到達其效率的瓶頸(約19 %),並且因為這種結構會產生因應變不均而使晶圓破裂或彎曲的缺點,使得其無法再降低矽晶圓的厚度和使用更大尺寸的晶圓來降低成本。所以我們希望能研究和其製程類似的雙面網印H型電極、雙面鈍化太陽能電池來討論是否有能取代傳統型太陽能電池的潛力。雙面照光型太陽能電池除了沒有上述結構上的缺點外,還能實現雙面進光的可能性,這也提高了實際應用層面上更多的可行性(如聚光型模組)。由於可能影響太陽能電池元件表現的因素有許多,如射極摻雜分佈、背電場摻雜分佈、表面復合和塊材內部復合等,所以我們希望先藉由一系列完整的模擬分析找出最佳的的製程參數,以供未來製程上的參考。本研究使用Sentaurus TCAD 作為模擬軟體,模擬結構是六吋雙面H型電極、雙面鈍化太陽能電池,在計算出的最佳金屬覆蓋率5.59 %下,可得到最高正面照光效率20.1 %、背面照光效率19.5 %。並且經過選擇性背電場摻雜的製程最佳化後,能將正面照光效率提升到20.3 %、背面照光效率19.9 %。
The conventional solar cells have met their efficiency barrier at present and faced the mechanical problems when we use screen-printed process of back-side aluminum metallization. As the consequence, when we want to decrease cell thickness or use large-scale wafer for further reduction of fabrication cost of solar cells, this problem will be enlarged. Thus, we choose to use bifacial silicon nitride passivated screen-printed solar cells as the substitute structure which share almost the same fabrication process as the conventional one. Bifacial solar cells not only have none of the disadvantages mentioned above but can be applied to a variety of concentrated modules, so they show the promising potential to be the major products in the future.
Due to many processing parameters in solar cell fabrication, we want to derive a complete analysis by simulation first. We use Sentaurus TCAD to simulate the performance of the cells and obtain the front limiting efficiency of 20.1% and back efficiency of 19.5% under the optimized metal coverage of 5.59%. In addition, the implementation of selective BSF can further improve front efficiency to 20.3% and back efficiency to 19.9%
1. https://en.wikipedia.org/wiki/World_energy_consumption
2. Peter J. Cousins, David D. Smith, Hsin-Chiao Luan, Jane Manning, Tim D. Dennis, Ann Waldhauer, Karen E. Wilson, Gabriel Harley & William P. Mulligan, Generation 3: Improved Performance at Lower Cost, 10.1109/PVSC.2010.5615850
3. http://www.neosolarpower.com/ 新日光能源股份有限公司
4. Mohamed M. Hilali, James M. Gee, Peter Hacke, Bow in Screen-printed Back-contact Industrial Silicon Solar Cells, Solar Energy Materials & Solar Cells 91 (2007) 1228–1233
5. G. G. Untilaa, T. N. Kost, A. B. Chebotareva, M. B. Zaks, A. M. Sitnikov, O. I. Solodukhab, and M. Z. Shvarts, n-Si Bifacial Concentrator Solar Cell, SEMICONDUCTORS Vol. 46, No. 9, 2012
6. Michael Cudzinovic, Bhushan Sopori, Control of Back Surface Reflectance From Aluminum Alloyed Contacts on Silicon Solar Cells. Proceedings of the 25th PVSC, Washington D.C., 1996; 501-503
7. Mario Bähr, Stefan Dauwe, Alexander Lawerenz and Lutz Mittelstädt, Comparison of Bow-Avoiding Al-Pastes for Thin, Large-Area Crystalline Silicon Solar Cells, Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, 2005; 926-929
8. Hiroshi Mori, USpatent Radiation Energy Transducing Device
9. A. Luque, A. Cuevas and J. M. Ruiz, Double-Sided n+ - p - n+ Solar Cell For Bifacial Concentration, Solar Cells, 2 (1980) 151 – 166
10. S.W. Glunz, J. Knobloch, D. Biro, and W. Wettling, Optimized High-efficiency Silicon Solar Cells With JSC= 42 mA/cm2 And η= 23.3%
11. Moustafa Y. Ghannam, A New N+PN+ Structure With Back Side Floating Junction For High Efficiency Silicon Solar Cells, Twenty-Second IEEE Photov. Spec. Conf., Las Vegas, Oct. 1991, pp. 284-289
12. H. Ohtsuka, M. Sakamoto, K. Tsutsui and Y. Yazawa, Bifacial Silicon Solar Cells with 21.9% Front Efficiency and 19.8% Rear Efficiency, Prog. Photovolt: Res. Appl. 2000; 8: 385-390
13. Bordina N.M., Zadde V.V., Zaitseva A.K., Landsman A.P., Strebkov D.S., Streltsova V.I., Unishkov V.A., Semiconductor Photoelectric Generator, US 3948682 A
14. A. Cuevas, A. Luque, J. Eguren and J. Del Alamo, High Efficiency Back Surface Solar Cell, Solar Cells, 3 (1981) 337 – 340
15. A. Moehlecke, I. Zanesco and A. Luque , Practical High Efficiency Bifacial Solar Cells , First World Conference on Photovoltaic Energy Conversion Hawaii, 1994, pp 1663-1666.
16. C. Z. Zhou, P. J. Verlinden, R. A. Crane, and R. M. Swanson, 21.9% Efficient Silicon Bifacial Solar Cells, 26th PVSC; Sept. 30-Oct. 3, 1997; Anaheim, CA
17. P. E. Schmid, Optical Absorption in Heavily Doped Silicon, Phys. Rev. B, 23, 5531, 1981
18. I.G. Romijn, M. Koppes, E,J. Kossen, C.J.J Tool, A. W. Weeber, High Efficiencies on Mc-Si Solar Cells Enables by Industrial Firing through Rear Side Passivating SiN:H, 21st European Photovoltaic Solar Energy Conference and Exhibition, 4-8 September 2006, Dresden, Germany
19. I.G. Romijn, A.R. Burgers, L.J. Geerligs, A.J. Carr, A. Gutjahr, D.S. Saynova, J. Anker, M., Optimizing Screen Printed n-type Solar Cells Towards 20% Efficiency, SolarCon/CPTIC China, 20-22 March 2012, Shanghai, China
20. M. A. Green, Solar Cells: “Operating Principles, Technology, and System Applications”, Prentice-Hall, (1982)
21. http://www.pveducation.org/
22. Mark J. Kerr, Andres Cuevas, Patrick Campbell, General Parameterization of Auger Recombination in Crystalline Silicon, Journal of Applied Physics: vol. 91, number 4
23. Mark J. Kerr, Andres Cuevas and Patrick Campbell, Limiting Efficiency of Crystalline Silicon Solar Cells Due to Coulomb-Enhanced Auger Recombination, Prog. Photovolt: Res. Appl.2003; 11:97–104
24. TCAD Sentaurus Version F-2011.09, Sentaurus Technology Template:EQE and I-V Curve Calculation of Textured Solar Cells Using Raytracer
25. DANIEL L. MEIER, DIETER K. SCHRODER, Contact Resistance: Its Measurement and Relative Importance to Power Loss in a Solar Cell, IEEE Transactions on Electron Device, VOL. ED-31, NO. 5, MAY 1984
26. Mohamed M. Hilali, Kenta Nakayashiki, Abasifreke Ebong and Ajeet Rohatgi, High-efficiency (19%) Screen-printed Textured Cells on Low-resistivity Float-zone Silicon with High Sheet-resistance Emitters, Prog. Photovolt: Res. Appl. 2006; 14:135–144
27. Armin G. Aberle, Surface Passivation of Crystalline Silicon Solar Cells: A Review, Prog. Photovolt: Res. Appl. 2000; 8: 473-487
28. 陳志軒著 “背點接式結構矽晶太陽能電池特性之模擬分析” 民國一百零一年國立清華大學材料科學與工程所碩士論文