簡易檢索 / 詳目顯示

研究生: 郭易宣
Guo, Yi-Hsuan
論文名稱: 一百瓦磷酸燃料電池系統及膜電極組優化
Establishing a 100W phosphoric acid fuel cell system and ameliorating its membrane electrode assembly
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員: 王本誠
Wang, Pen-Cheng
薛康琳
Hsueh, Kan-Lin
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 81
中文關鍵詞: 燃料電池氫能磷酸燃料電池質子交換膜
外文關鍵詞: fuel cell, hydrogen energy, phosphoric acid fuel cell, proton exchange membrane
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了將實驗成果商業化,本研究方向為將本研究室現有的單電池系統改進並規模化,配合本研究室前端甲醇重組器,結合具有較佳抗一氧化碳能力且操作溫度接近重組器的磷酸燃料電池作為發電系統。本研究所使用的磷酸燃料電池質子交換膜為聚苯並咪唑(PBI),PBI有需多特性,包括熱穩定性,化學穩定性,最特別的是幾乎無電滲拉力,亦即質子在膜內傳遞時,不會將水分子由陽極拖至陰極,此使得在高溫操作下即使無加濕系統,電池系統也不會脫水。
      為了大幅縮減製程的時間,電極製作將由原本的噴塗製程改成線棒塗布,本研究中線棒塗佈使用之觸媒漿料,以丁醇作為溶劑配置,並利用特定濕膜厚度之線棒進行塗佈,熱處理後可得微孔層碳黑乘載量2 mg/cm2,觸媒層鉑承載量0.25 mg/cm2,並於170 ℃通以氫氣及氧氣,進行反應面積1 cm2之單電池測試,在電流密度2.798 A/cm2下,可得最高功率密度830 mW/cm2,單位鉑產能更高達3320 mW/mg,觸媒使用率增為原噴塗製程的3倍左右。
    在長效方面,皆操作於定電流密度0.2 A/cm2,170 ℃,除了含微孔層的單層線棒塗佈電極,線棒塗佈所得電極皆比噴塗更為出色穩定。線棒塗佈之雙層觸媒層電極(鉑承載量0.8 mg/cm2),雖然效能並無顯著提升,然而最高功率劣化速率(每小時0.264 %)卻有約兩倍多的改善。
      利用線棒塗佈所得之電極,對反應面積放大作單電池測試之分析。陰陽極分別為空氣及氫氣,於170 ℃操作下,反應面積25 cm2電極所得最高功率密度僅有1 cm2電極之56 %。由極化曲線可知,效能差異主要來自歐姆阻抗,推測施加熱壓壓力太小,以致膜電極組無法緊密貼合。


    For the purpose of commercializing our research, this study is aiming for improving our single cell performance and scale it up. To meet the demands of good carbon monoxide tolerance and high operation temperature for our front-end methanol reforming system, phosphoric acid fuel cell (PAFC) is chosen as our power source.
    In the study, polybenzimidazole (PBI) is introduced to our PAFC as the electrolyte membrane. PBI features good thermal and good chemical stability, and especially no electroosmotic force, which means H2O molecules won’t be dragged from anode to cathode as fuel cell operating. In this case, even without humidification system, cell system won’t dehydrate at high operation temperature (120 ~ 170 ℃).
    To accelerate our electrode manufacturing process, bar coating process is adopted to replace our old spray coating process. In the new process, I take 1-butanol as the solvent of catalyst ink, and use bars with specific wet-film thickness to coat microporous layer (MPL) and catalyst layer (CL) onto carbon clothes. After heat treatment, we can get carbon black loading of 2 mg/cm2 on MPL and Pt loading of 0.25 mg/cm2 on CL. With sufficient hydrogen and oxygen supplied, the peak power density of the electrode is 830 mW/cm2 at 170 ℃, and power per unit Pt is extremely high as 3320 mW/mg which is two times more than that of spray-coating electrode.
    For long-term tests, every cell is operated under constant current density of 0.2 A/cm2 at 170 ℃. Electrodes made by bar coating outperform those made by spray coating. Although Electrodes made by bar coating with 2-catalyst layers (Pt loading 0.8 mg/cm2) show almost no improvement on performance, peak power degradation rate (0.264 % per hour) reduces by more than two times.
    Bar coating technique is applied to analyze the scaling-up of electrode active area. Air and hydrogen are sent to the cathode and the anode respectively in the experiment. At 170 ℃, 25 cm2 electrodes’ peak power density is only 56 % as high as 1 cm2 electrodes’. The difference is mainly from Ohmic resistance, because too small hot press pressure cannot make membrane electrode assembly (MEA) combined tightly.

    總目錄 摘要...............i Abstract...............ii 圖目錄...............vii 表目錄...............xi 第一章 緒論...............1 1-1 前言...............1 1-2 燃料電池簡介...............1 1-3 燃料電池種類與原理...............3 1-3-1 磷酸燃料電池(Phosphoric Acid Fuel Cell, PAFC)...............4 1-3-2 質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)...............5 1-3-3 鹼性燃料電池(Alkaline Fuel Cell, AFC)...............6 1-3-4 熔融碳酸鹽燃料電池(Molten Carbonate Fuel Cell, MCFC)...............7 1-3-5 固體氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)...............8 1-3-6 直接甲醇燃料電池(Direct Methanol Fuel Cell, DMFC)...............9 1-3-7 甲醇重組式燃料電池(Reformed Methanol Fuel Cell, RMFC)...............9 1-4 研究動機...............12 第二章 基本原理與文獻回顧...............13 2-1 磷酸燃料電池構造...............13 2-1-1 電流收集層與流道...............13 2-1-2 氣體擴散層...............15 2-1-3 觸媒層...............16 2-1-4 質子交換膜...............17 2-1-5 氣密用墊片...............18 2-2 燃料電池理論...............18 2-2-1 電化學熱力學...............18 2-2-2 電化學動力學...............20 2-3 磷酸燃料電池中質子交換膜研究...............22 2-3-1 玻璃纖維與聚四氟乙烯複合膜...............30 2-3-2 玻璃纖維與氧化石墨烯複合膜...............33 2-3-3 鹼性二氧化鈦/PBI複合膜...............35 2-4 氣體擴散層與觸媒層的研究...............38 2-4-1 觸媒劣化...............42 2-5 磷酸燃料電池堆可靠性及耐久性...............44 第三章 實驗方法...............48 3-1 實驗流程...............48 3-2 實驗藥品與設備...............48 3-2-1 實驗藥品、耗材...............48 3-2-2 實驗用氣體...............49 3-2-3 實驗設備...............49 3-2-4 分析儀器...............50 3-3 磷酸燃料電池性能測試...............50 3-3-1 氣體擴散層、觸媒層及電解質膜的製備...............50 3-3-2 膜電極組製備...............52 3-3-3 燃料電池測試...............52 3-4 循環伏安法...............54 第四章 結果與討論...............56 4-1 線棒塗佈分析...............56 4-1-1 線棒塗佈之溶劑選擇...............56 4-1-2 丁醇為溶劑之不同配比測試結果...............59 4-1-3 噴塗與線棒塗佈所得電極之比較...............61 4-1-4 微孔層引入電極中...............64 4-1-5 提升白金程載量...............69 4-2 電極反應面積放大...............71 第五章 結論...............73 第六章 未來展望...............74 參考文獻...............75

    [1] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine, vol. 14, pp. 127-130, 1839.
    [2] J. Larminie and A. Dicks, Fuel cell systems explained, 2nd edition. Chichester, West Sussex: J. Wiley, 2003.
    [3] D. Haack, E. Sevier, K. Melvin, M. Mauhar, “V.B.3 Carbon-Carbon Bipolar Plates,” DE-FC04-02AL67627, 2002.
    [4] M. S. Wilson, J. A. Valerio, and S. Gottesfeld, “Low Platinum Loading Electrodes for Polymer Electrolyte Fuel-Cells Fabricated Using Thermoplastic Ionomers,” Electrochimica Acta, vol. 40, pp. 355-363, Feb 1995.
    [5] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, “Pt based anode catalysts for direct ethanol fuel cells,” Applied Catalysis B: Environmental, vol. 46, pp. 273–285, 2003.
    [6] A. Boudghene Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews, vol. 6, pp. 433-455, 2002.
    [7] L. Carrette, K. A. Friedrich and U. Stimming, “Fuel Cells – Fundamentals and Applications,” Fuel Cells, vol. 1, pp. 5-39, 2001.
    [8] K.-D. Kreuer, S. J. Paddison, E. Spohr, M. Schuster, “Transport in Proton Conductors for Fuel-Cell Applications: Simulations, Elementary Reactions, and Phenomenology,” Chemical Reviews, vol. 104, pp. 4637-4678, 2004.
    [9] A. Chandan, M. Hattenberger, A. El-kharou, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingrama, W. Bujalski, “High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review,” Journal of Power Sources, vol. 231, pp.264-278, 2013.
    [10] A. Hermanna, T. Chaudhuria, P. Spagnol, “Bipolar plates for PEM fuel cells: A review,” International Journal of Hydrogen Energy, vol. 30, pp. 1297-1302, 2005.
    [11] P. L. Hentall, J. B. Lakeman, G. O. Mepsted, P. L. Adcock, J. M. Moore, “New materials for polymer electrolyte membrane fuel cell current collectors,” Journal of Power Sources, vol. 80, pp. 235–241, 1999.
    [12] J. Wind, R. Spa¨h, W. Kaiser, G. Bo¨hm, “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, vol. 105, pp. 256–260, 2002.
    [13] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corrosion Science, vol. 46, pp. 1369–1380, 2004.
    [14] Y.J. Ren, C.L. Zeng, “Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process,” Journal of Power Sources, vol. 171, pp. 778–782, 2007.
    [15] H. Wang, M. A. Sweikart, J. A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cell,” Journal of Power Sources, vol. 115, pp. 243-251, 2003.
    [16] H. Wang, J. A. Turner, “Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 128, pp. 193-200, 2004.
    [17] M. Neergat, A.K. Shukla, “A high-performance phosphoric acid fuel cell,” Journal of Power Sources, vol. 102, pp. 317–321, 2001.
    [18] K. H. Yoon, B. D. Yang, “Preparation and characterization of matrix retaining electrolyte for a phosphoric acid fuel cell by non-volatile solvent, NMP,” Journal of Power Sources, vol. 124, pp. 47–51, 2003.
    [19] J. S. Wainright, J.-T. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles: a new polymer electrolyte,” Journal of the Electrochemical Society, vol. 142, no. 7, pp. L121–L123, 1995.
    [20] J.-T. Wang, R. F. Savinell, J. Wainright, M. Litt, and H. Yu, “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte,” Electrochimica Acta, vol. 41, no. 2, pp. 193–197, 1996.
    [21] J. Kerres, A. Ullrich, F. Meier, and T. Häring, “Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells,” Solid State Ionics, vol. 125, no. 1, pp. 243–249, 1999.
    [22] D. J. Jones, J. Rozière “Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications,” Journal of Membrane Science, vol. 185, pp. 41-58, 2001.
    [23] Y.-L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells,” Journal of the Electrochemical Society, vol. 151, no. 1, pp. A8–A16, 2004.
    [24] J. Lobato, P. Canizares, M. A. Rodrigo, D. Úbeda, F. J. Pinar, “A novel titanium PBI-based composite membrane for high temperature PEMFCs,” Journal of Membrane Science, vol. 369, pp. 105–111, 2011.
    [25] J. Lobato, P. Canizares, M. A. Rodrigo, D. Úbeda, F. J. Pinar, “Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes,” Journal of Power Sources, vol. 196, pp. 8265–8271, 2011.
    [26] F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, J. Lobato, “Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount,” RSC Advances, vol. 2, pp. 1547–1556, 2012.
    [27] F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, J. Lobato, “Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes,” Journal of Power Sources, vol. 274, pp. 177-185, 2015.
    [28] R. H. He, Q. Li, G. Xiao, N.J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” Journal of Membrane Science, vol. 226, vol. 169–184, 2003.
    [29] P. Staiti, M. Minutoli, S. Hocevar, “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application,” Journal of Power Sources, vol. 90, pp. 231–235, 2000.
    [30] S. Wang, F. Dong, and Z. Li, “Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability," Journal of Materials Science, vol. 47, pp. 4743-4749, 2012.
    [31] P. Gomez-Romero, J. A. Asensio, S. Borros, “Hybrid proton-conducting membranes for polymer electrolyte fuel cells Phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40),” Electrochimica Acta, vol. 50, pp. 4715–4720, 2005.
    [32] S. M. J. Zaidi, “Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate,” Electrochimica Acta, vol. 50, pp. 4771–4777, 2005.
    [33] L. C. Jheng, C. Y. Huang, and S. L. C. Hsu, "Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells," International Journal of Hydrogen Energy, vol. 38, pp. 1524-1534, 2013.
    [34] R. Zhang, Z. Shi, Y. Liu, and J. Yin, "Synthesis and characterization of polybenzimidazole–nanodiamond hybrids via in situ polymerization method," Journal of Applied Polymer Science, vol. 125, pp. 3191-3199, 2012.
    [35] X. Tiana, S. Wanga, J. Lib, F. Liua, X. Wanga, H. Chena, D. Wanga, H. Nia, Z. Wang, “Benzimidazole grafted polybenzimidazole cross-linked membranes with excellent PA stability for high-temperature proton exchange membrane applications,” Applied Surface Science, vol. 465, pp. 332-339, 2019.
    [36] Q. Tang, K. Huang, G. Qian, and B. C. Benicewicz, "Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane," Journal of Power Sources, vol. 229, pp. 36-41, 2013.
    [37] A. S. Gruzd, E. S. Trofimchuk, N. I. Nikonorova, E. A. Nesterova, I. B. Meshkov, M. O. Gallyamov, et al., "Novel polyolefin/silicon dioxide/H3PO4 composite membranes with spatially heterogeneous structure for phosphoric acid fuel cell," International Journal of Hydrogen Energy, vol. 38, pp. 4132-4143, 2013.
    [38] 呂佳蓮,「具玻璃纖維與聚四氟乙烯複合多孔隔膜之高效能磷酸燃料電池」,國立清華大學碩士論文,103年。
    [39] 張承平,「高效能甲醇重組式磷酸燃料電池系統」,國立清華大學碩士論文,106年。
    [40] C. L. Lu, C. P. Chang, Y.H. Guo, T. K. Yeh, Y. C. Su, P. C. Wang, K. L. Hsueh, and F.-G. Tseng, “High-Performance and Low-Leakage Phosphoric Acid Fuel Cell with Synergic Composite Membrane Stacking of Micro Glass Microfiber and Nano PTFE,” Renewable energy, vol. 134, pp. 982-988, 2019.
    [41] H. Bi, K. Yin, X. Xie, Y. Zhou, N. Wan, F. Xu, F. Banhart, L. Sun, R. S. Ruoff, “Low Temperature Casting of Graphene with High Compressive Strength,” Advanced Material, vol. 24, pp. 5124-5129, 2012.
    [42] H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano, vol. 2, pp. 463-470, 2008.
    [43] 邱裕婷,「氧化石墨烯修飾之多孔玻璃纖維應用於燃料電池之酸鹼複合式質子交換膜」,國立清華大學碩士論文,105年。
    [44] 楊子閎,「鹼性雙氧水處理之二氧化鈦摻雜聚苯並咪唑薄膜應用於磷酸燃料電池」,國立清華大學碩士論文,107年。
    [45] C.-Y. Wu, K.-J. Tu, J.-P. Deng, Y.-S. Lo, and C.-H. Wu, "Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis," Materials, vol. 10, p. 566, 2017.
    [46] K. Mitsuda, H. Shiota, H. Kimura, T. Murahashi, “Influence of the temperature of heat treatment on phosphoric acid fuel cell cathodes,” Journal of Material Science, vol. 26, pp. 6436-6442, 1991.
    [47] D.S. Chan, C.C. Wan, “Influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells,” Journal of Power Sources, vol. 50, pp. 163-176, 1994.
    [48] M. Mamlouk, K. Scott, “The effect of electrode parameters on performance of a phosphoric acid-doped PBI membrane fuel cell,” International Journal of Hydrogen Energy, vol. 35, pp. 784-793, 2010.
    [49] A. D. Modestov, M. R. Tarasevich, V. Y. Filimonov, A. Y. Leykin, “Influence of catalyst layer binder on Catalyst utilization and performance of fuel cell with polybenzimidazole- H3PO4 membrane,” Journal of Electrochemical Society, vol. 156, pp. B650-B656, 2009.
    [50] H. Su, S. Pasupathi, B. Bladergroen, V. Linkov, B. G. Pollet, “Optimization of gas diffusion electrode for polybenzimidazole-based high temperature proton exchange membrane fuel cell: Evaluation of polymer binders in catalyst layer,” International Journal of Hydrogen Energy, vol. 38, pp. 11370-11378, 2013.
    [51] J.-H. Kim, H.-J. Kim, T.-H. Lim, H.-I. Lee, “Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer,” Journal of Power Sources, vol. 170, pp. 275–280, 2007.
    [52] S. Martin, Q. Li, T. Steenberg, J.O. Jensen, “Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells,” Journal of Power Sources, vol. 272, pp. 559-566, 2014.
    [53] S. Martin, Q. Li, J.O. Jensen, “Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes,” Journal of Power Sources, vol. 293, pp. 51-56, 2015.
    [54] Z. Qi, A. Kaufman, “Improvement of water management by a microporous sublayer for PEM fuel cells,” Journal of Power Sources, vol. 109, pp. 38-46, 2002.
    [55] L.R. Jordan, A.K. Shukla, T. Behrsing, N.R. Avery, B.C. Muddle, M. Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources, vol. 86, pp. 250–254, 2000.
    [56] S. Park, J.-W. Lee, B. N. Popov, “Effect of carbon loading in microporous layer on PEM fuel cell performance,” Journal of Power Sources, vol. 163, pp. 357–363, 2006.
    [57] J. Lobato, P. Cañizares ,M. A. Rodrigo, D. Úbeda, F. J. Pinar, J. J. Linares, “Optimisation of the microporous layer for a polybenzimidazole-based high temperature PEMFC – effect of carbon content,” Fuel cells, vol. 10, pp. 770–777, 2010.
    [58] Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, “PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability,” Electrochimica Acta, vol. 52, pp. 3910–3920, 2007.
    [59] X. Zhao, W. Yuan, Q. Wu, H. Sun, Z. Luo, H. Fu, “High-temperature passive direct methanol fuel cells operating with concentrated fuels,” Journal of Power Sources, vol. 273, pp. 517–521, 2015.
    [60] P. J. Ferreira, G. J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, “Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells,” Journal of The Electrochemical Society, vol.152, pp. A2256-A2271, 2005.
    [61] Y. Zhai, H. Zhang, D. Xing, Z.-G. Shao, “The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test,” Journal of Power Sources, vol. 164, pp. 126-133, 2007.
    [62] J. Wang, “Barriers of scaling-up fuel cells: Cost, durability and reliability,” Energy, vol. 80, pp. 509-521, 2015
    [63] Y. H. Jeong, K. Oh, S. Ahn, N.Y. Kim, A. Byeon, H.-Y. Park, S. Y. Lee, H. S. Park, S. J. Yoo, J. H. Jang, H.-J. Kim, H. Ju, J. Y. Kim, “Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells,” Journal of Power Sources, vol. 363, pp. 365-374, 2017.
    [64] P. Chippar, H. Ju, “Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell,” Solid State Ionics, vol. 225, pp. 30-39, 2012.
    [65] S. Won, K. Oh, H. Ju, “Numerical degradation studies of high-temperature proton exchange membrane fuel cells with phosphoric acid-doped PBI membranes,” Hydrogen Energy, vol. 41, pp. 8296-8306, 2016.
    [66] H.-W. Tsai, C.-M. Lai, J.-N. Lin, L.-D. Tsai, “Electrochemical activity and durability of Pt-based catalyst support for PEMFC,” Journal of Chinese Corrosion Engineering, vol. 27, pp. 45 ~ 54, 2013.
    [67] J. Wang, “Theory and practice of flow field designs for fuel cell scaling-up: A critical review,” Applied energy, vol. 157, pp. 640-663, 2015.
    [68] M. Z. Chowdhury, O. Genc, S. Toros, “Numerical optimization of channel to land width ratio for PEM fuel cell,” International Journal of Hydrogen Energy, vol. 43, pp. 10798-10809, 2018.
    [69] F. Barreras, A. Lozano, V. Roda, J. Barroso, J. Martın, “Optimal design and operational tests of a high temperature PEM fuel cell for a combined heat and power unit,” International Journal of Hydrogen Energy, vol. 39, pp. 5388-5398, 2014.
    [70] H. Zhoufa, W. Shenlong, P. Mu, F.-B. Weng, C.-Y. Hsu, A. Su, “The effect of micro-porous layers on the performance of proton exchange membrane fuel cells,” Institution of Mechanical Engineers, vol. 224, pp. 179-184, 2010.
    [71] H. Su, C. Felix, O. Barron, P. Bujlo, B. J. Bladergroen, B. G. Pollet, S, Pasupathi, “High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells,” Electrocatalysis, vol. 5, pp. 361-371, 2014.
    [72] J. Lobato,M.A. Rodrigo, J.J. Linares, K. Scott, “Effect of the catalytic ink preparation method on the performance of high temperature polymer electrolyte membrane fuel cells.” J. Power Sources, vol. 157, pp. 284–292, 2006.
    [73] F. Seland, T. Berning, B. Børresen, R. Tunold, “Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte.” J. Power Sources, vol. 160, pp. 27–36, 2006.
    [74] J.-H. Kim, H.-J. Kim, T.-H. Lim, H.-I. Lee, “Dependence of the performance of a high-temperature polymer electrolyte fuel cell on phosphoric acid-doped polybenzimidazole ionomer content in cathode catalyst layer.” J. Power Sources, vol. 170, pp. 275–280, 2007.
    [75] O. E. Kongstein, T. Berning, B. Børresen, F. Seland, R. Tunold, “Polymer electrolyte fuel cells based on phosphoric acid doped polybenzimidazole (PBI) membranes.” Energy, vol. 32, pp. 418–422, 2007.
    [76] A.-L. Ong, G.-B. Jung, C.-C. Wu, W.-M. Yan, “Single-step fabrication of ABPBI-based GDE and study of its MEA characteristics for high temperature PEM fuel cells.” International Journal of Hydrogen Energy, vol. 35, pp. 7866–7873, 2010.
    [77] G.-B. Jung, C.-C. Tseng, C.-C. Yeh, C.-Y. Lin, “Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, vol. 37, pp. 13645–13651, 2012.
    [78] C. Pan, Q. Li, J.O. Jensen, R. He, L.N. Cleemann, M.S. Nilsson, N.J. Bjerrum, Q. Zeng, “Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells.” Journal of Power Sources, vol. 172, pp. 278–286, 2007.
    [79] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, F.J. Pinar, “Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC.” International Journal of Hydrogen Energy, vol. 35, pp. 1347–1355, 2010.
    [80] M. Mamlouk, K. Scott, “Phosphoric acid-doped electrodes for a PBI polymer membrane fuel cell.” International Journal of Energy Research, vol. 35, pp. 507–519, 2011.
    [81] C. Wannek, W. Lehnert, J. Mergel, “Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers.” Journal of Power Sources, vol. 192, pp. 258–266, 2009.
    [82] S. Matar, A. Higier, H. Liu, “The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell.” Journal of Power Sources, vol. 195, pp. 181–184, 2010.

    QR CODE