簡易檢索 / 詳目顯示

研究生: 徐肇蔚
Hsu, Chao Wei
論文名稱: 銅/鎳核殼結構奈米線之製備與特性研究
Synthesis and characterization of Cu-Ni core-shell nanowires
指導教授: 廖建能
Liao,Chien Neng
口試委員: 闕郁倫
Chueh, Yu Lun
周苡嘉
Chou, Yi Chia
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 59
中文關鍵詞: 銅鎳核殼結構導電性質奈米線
外文關鍵詞: Copper Nickel, core-shell structure, electrical property, nanowire
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅因為其良好的導電性且價格低廉,除了使用於積體電路中作為導線之外,在奈米線製程可撓曲式透明導電薄膜中也相當具有開發潛力,因此了解銅在奈米尺度下所呈現的性質也日趨重要。雙晶是材料常見的微結構,有文獻指出,若在銅內部導入奈米雙晶結構,不僅能大幅提升銅的機械強度,同時亦可保持良好的導電性。此外,其抗電遷移能力也會有所提升。所以不少研究致力於開發奈米雙晶銅的製程,而本實驗室之前研究成功在自製陽極氧化鋁基板中,以低溫脈衝電鍍製備出高密度竹節狀雙晶結構的奈米線。而關於奈米雙晶銅的化學穩定性方面,文獻指出在材料中雙晶結構的生成會改變晶界結構,進而改善晶界的腐蝕特性,而含有奈米雙晶結構的銅奈米線氧化特性,目前資料則較缺乏。銅奈米線因為表面積與體積比例過大,在應用上需要克服氧化的問題,有研究團隊利用化學法還原鎳層在銅奈米線外形成核殼結構而達到抗氧化的效果,但其實驗多為利用高毒性化學藥劑,不利於一般實驗室使用。
    本實驗先以低溫脈衝電鍍出奈米雙晶銅奈米線,並成功開發以低毒性硼氫化鈉還原鎳層形成銅/鎳核殼結構奈米線,利用微製造製程搭配四點探針量測單根奈米線的電阻在不同溫度下隨時間的變化,並分析其氧化特性。高解析度穿透式電子顯微鏡分析竹節狀雙晶的生成;光學量測與顯微鏡元素分析顯示本實驗製程之銅鎳奈米線為核殼結構。電性量測結果則發現含有奈米雙晶結構的銅奈米線,在常溫下可維持其電阻值長達一個月,而銅/鎳核殼結構奈米線在加熱數百小時後其電阻值仍不受影響,證明其有良好的化學穩定性。


    Due to it’ s good conductivity and low-cost property, copper (Cu) is often used as interconnect and flexible transparent conductive film material with the introduction of nano-processing. Therefore, many studies try to analyze the properties of copper in nanoscale, such as nanowires (NWs). Twin is a common microstructure in metals. It has been demonstrated that nano-twinned copper have high mechanical strength, good conductivity, and moreover, superior electromigration resistance. In our previous study, we have successfully fabricated Cu NWs with high density of nanoscale traverse twinning structure by using pulsed electrodeposition at low temperature. The formation of nano-twinned structure can also improve the corrosion properties of Cu metallization by changing grain boundary structure. However, research report on the oxidation characteristics of nanotwinned Cu NWs is limited. Copper is prone to oxidation in nanoscale because of high surface-to-volume ratio, some researches showed that Cu-Ni NWs with core-shell structure that was prepared by coating a thin Ni layer on Cu NWs using chemical reduction method possesses good oxidation resistance. Nevertheless, these treatment were mostly done by using highly toxic reducing agent.
    In this study, high aspect-ratio nano-twinned Cu NWs were prepared by pulsed current (PC) electroplating, and Cu-Ni core-shell NWs were successfully prepared by the low-toxicity reducing agent, sodium borohydride. Time-and-temperature dependence of electrical resistivity for single Cu and Cu-Ni NWs prepared by micro-fabrication process has been investigated. The bamboo-like twinning structure and core-shell structure of Cu-Ni NWs have been examined by transmission electron microscopy (TEM) and UV-visible/TEM Energy Disperse X-ray analysis. According to four-probe I-V electrical measurement, the resistivity of Cu NWs with nanotwins remained almost constant after exposed in ambient air for one month, while the resistivity of Cu-Ni core-shell NWs also kept unchanged after hundreds hours of thermal aging, revealing good chemical stability.

    摘要 I 英文摘要 II 致謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章、緒論 1 1.1 背景簡介 1 1.2 研究動機 2 第二章、文獻回顧 3 2.1 陽極氧化鋁基板輔助電鍍 3 2.1.1 AAO結構與表面形貌 4 2.1.2 AAO基板形成機制 5 2.1.3 陽極氧化處理參數對AAO結構的影響 7 2.1.4 二次陽極氧化處理 10 2.2 奈米雙晶銅 11 2.3 電鍍雙晶 14 2.3.1 銅奈米雙晶成形機制 14 2.3.2 電鍍參數對奈米線微結構影響 16 2.4 銅奈米線氧化特性 17 2.4.1 奈米線氧化對導電性的影響 17 2.4.2 奈米雙晶結構對氧化性質的影響 19 2.4.3 鎳層結構對氧化性質的影響 20 第三章、實驗步驟 22 3.1實驗設計與流程 22 3.1.3陽極氧化鋁基板製備 22 3.1.2電鍍銅奈米線 24 3.1.3化學法合成鎳殼層 26 3.2 試片分析 27 3.2.1 X光結晶繞射 (XRD) 分析 27 3.2.2 掃描式電子顯微鏡分析 27 3.2.3 穿透式電子顯微鏡 (TEM) 分析 28 3.2.4 紫外光-可見光 (UV-Visible) 光譜分析 28 3.2.5 電性分析 29 3.2.6 氧化特性分析 30 3.3 實驗設備與儀器 31 第四章、結果與討論 32 4.1 前言 32 4.2 AAO基板製備銅奈米線 32 4.3 銅奈米線晶體優選方向 35 4.4 雙晶形成機制 40 4.3 銅奈米線電性量測 42 4.4 銅鎳核殼結構奈米線分析 45 4.5 氧化特性分析 50 第五章、結論 56 參考文獻 57

    A.R. Rathmell and B.J. Wiley, Synthesis and Coating of Long, Thin Copper Nanowires to Make Flexible Transparent Conducting Films on Plastic Substrates. Advanced Materials, 23(2011), 4798
    A.R. Rathmell, M. Nuyen, M. Chi and B.J. Wiley, Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks. Nano Letter, 12(2012), 3193
    K.C Chen, W.W. Wu, C.N Liao, L.J Chen and K.N. Tu, Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper. Science, 321(2008), 1066
    L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Ultrahigh Strength and High
    Electrical Conductivity in Copper . Science, 304(2004), 422
    T.C Chan, Y.M Lin, H.W Tsai, Z.M. Wang, C.N. Liao and Y.L Chueh, Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale, 6(2014), 7332
    C.J Yang, C.L Huang and C.N. Liao, Enhancing Chemical Stability of Electroplated Cu Films by Engineering Electrolyte Chemistry and Twinning Structure. Journal of Electronic Materials, 44(2015), 2529
    S. Ono, Structure and Growth Mechanism of Anodic Oxide Films Formed on Aluminum and Their Gas Emission. Journal of the Vacuum Society of Japan, 52 (2009), 637
    O. Jessensky, F. Müller and U. Gösele, Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina. Applied Physics Letters, 72(1998), 1173
    A.P. Li, F. Mu¨ller, A. Birner, K. Nielsch and U. Go¨sele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. Journal of Applied Physics, 84(1998), 11
    J.P. O’Sullivan and G.C. Wood, The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium. The Royal Society, 317(1970), 511
    G. Paolini, M. Masoero, F. Sacchi and M. Paganelli, An Investigation of Porous Anodic Oxide Films on Aluminum by Comparative Adsorption, Gravimetric and
    Electronoptical Measurements. Journal of the Electrochemical Society, 112(1965), 32
    M. Lai and D.J Riley, Templated electrosynthesis of nanomaterials and porous structures. Journal of Colloid and Interface Science, 323(2008), 203
    H. Masuda and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 268(1995) 1466
    G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister and U. Gösele, Highly ordered monocrystalline silver nanowire arrays. Journal of Applied Physics, 91(2002), 3243
    X. H. Chen, L. Lu and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of Applied Physics, 102(2007), 083708
    H. Yoshinaga, Measurements of the anisotropy of the dislocation resistivity in Au, Ag, and Cu. Physica Status Solidi, 18(1966), 625
    I. Nakamichi, Electrical Resistivity and Grain Boundaries in Metals. Material Science Forum, 207(1996), 47.
    L. H. Qian, Q. H. Lu, W. J. Kong and K. Lu, Electrical Resistivity of fully-relaxed Grain Boundaries in Nanocrystalline Copper. Scripta Materialia. 50(2004), 1407
    A. F. Mayadas and M. Shatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces. Physical Review B: Condensed Matter, 1(1970), 1382
    D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš and K. N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Applied Physics Letter, 91(2007), 254105
    J. M. Howe, Interfaces in Materials (Wiley, New York, 1997)
    C.N. Liao, Y.C. Lu and D. Xu, Modulation of Crystallographic Texture and Twinning Structure of Cu Nanowires by Electrodeposition. Journal of The Electrochemical Society, 160(2013), 207.
    S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim,H. Hahn and T. Schimmel, Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition. Small, 5(2009), 2265
    M. E. T. Molares, E. M. Höhberger, Ch. Schaeflein, R. H. Blick, R. Neumann and C. Trautmann, Electrical characterization of electrochemically grown single copper nanowires. Applied Physics Letters, 82(2003), 2139
    S. Kondo, N. Sakuma, Y. Homma and N. Ohashi, Slurry Chemical Corrosion and Galvanic Corrosion during Copper Chemical Mechanical Polishing. Japan Society of Applied Physics, 39(2000), 6216
    W. Luo, P. Shi, Y. Xu, M. Yan and C. Wang, Electrochemical Corrosion Behavior of Bulk Nanocrystalline Copper in Nitric Acid Solution. Journal of The Electrochemical Society, 159(2012), C80
    U. Erb, H. Gleiter and G. Schwitzgebel, The Effect of Boundary Structure (Energy) on Interfacial Corrosion. Acta Metallurgica, 30(1982), 1377
    F. Maurer, J. Brotz, S. Karim, M. E. T. Molares, C. Trautmann and H. Fuess, Preferred growth orientation of metallic fcc nanowires under direct and alternating electrodeposition conditions. Nanotechnology, 18(2007), 135709
    盧逸滄, 國立清華大學碩士論文 (2012)
    X. W. Wang, G. T. Fei, X. J. Xu, Z. Jin and L. D. Zhang, Size-Dependent Orientation Growth of Large-Area Ordered Ni Nanowire Arrays. Journal of Physical Chemistry B, 109(2005), 24326
    R. L. Graham, G. B. Alers, T. Mountsier, N. Shamma, S. Dhuey, S. Cabrini, R. H. Geiss, D. T. Read and S. Peddeti , Resistivity dominated by surface scattering in sub-50 nm Cu wires. Applied Physics Letters 96(2010), 042116
    G. S. Lotey, S. Kumar, N. K. Verma, Fabrication and electrical characterization of highly ordered copper nanowires. Applied Nanoscience, 2(2012), p7–13
    A. Kobler, T. Beuth, T. Klo¨ ffel,R. Prang,M. Moosmann,T. Scherer, S Walheim, H. Hahn, C. Ku¨ bel,B. Meyer, T. Schimmela and E. Bitzeke, Nanotwinned silver nanowires: Structure and mechanical properties. Acta Metallurgica, 92 (2015), 299
    I.G. Batyrev and L.Kleinman, In-plane relaxation of Cu (111) and Al (111)/"α" -〖"Al" 〗_"2" "O" _"3" (0001) interfaces. Physical Revies B, 64(2001), 033410
    C.L. Huang and C. N. Liao, Chemical reactivity of twin-modified copper nanowire surfaces. Applied Physics Letters, 107(2015), 021601
    S. B. Cronin, Y. M. Lin, O. Rabin, M. R. Black, J. Y. Ying, M. S. Dresselhaus, P. L. Gai, J. P. Minet and J. P. Issi, Making electrical contacts to nanowires
    with a thick oxide coating. Nanotechnology, 13(2002), 1

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE