簡易檢索 / 詳目顯示

研究生: 康世聰
Kang, Shih-Tsung
論文名稱: 超音波藥物載體的主動輸送與操控
Active Delivery and Manipulation of Ultrasound-Controllable Drug Vesicles
指導教授: 葉秩光
Yeh, Chih-Kuang
口試委員: 王士豪
程大川
李夢麟
王福年
崔博翔
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 131
中文關鍵詞: 主動式輸送與操控超音波誘發汽化液、氣相變液滴巨噬細胞細胞載體輸送單束聲鉗高度聚焦聲束聲渦
外文關鍵詞: active delivery and manipulation, phase-change droplets, cell-based delivery, single-beam acoustic tweezers, highly focused acoustic beam
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   超音波藥物載體如液、氣相變液滴,表面可修飾特殊抗體、內部可包覆藥物,標的性吸附後可由超音波誘發汽化進行藥物釋放,體內穩定性較傳統微氣泡更佳,但此種被動式的輸送單純依靠流體剪應力,需時較長因此載體仍會在有限時間內被免疫系統清除,本論文分作以兩大主題探討主動式輸送以及操控這些超音波藥物載體技術之可行性。
      第二章探討利用巨噬細胞輸送超音波相變液滴之可行性,巨噬細胞可由血管及非血管路徑滲透至腫瘤缺氧缺血區累積,因此可望將超音波藥物載體主動輸送到腫瘤內最難治療的區域。實驗證實乘載相變液滴的巨噬細胞可透過超音波脈衝的激發而汽化,瞬間將細胞體瓦解並產生慣性穴蝕效應,細胞體的侷限使得氣泡在產生的過程中彼此結合,形成更大的氣泡。慣性穴蝕效應的發生有利於對週邊組織產生機械力,提升藥物的通透性,大氣泡的產生則有利阻礙腫瘤血管內的養分以及氧氣供應來進行氣栓治療,此研究證實了以細胞輸送超音波藥物載體並進行超音波控制釋放的可行性,並說明了伴隨的物理現象於臨床應用的好處。
      第三、四章提出兩種超音波聲鉗的數學模型,以電腦模擬探討超音波聲鉗主動對微米載體進行非侵入式的遠距操控,這些技術可望結合前述之主動式輸送技術,加速將超音波藥物載體侷限於欲治療之區域。此部分提出兩種方便臨床操作的單聲束聲鉗模型,其中之一由高度聚焦的聲束為基礎,可針對一任意長度的高度聚焦超音波脈衝作用於一遠大於波長的微粒所產生的輻射力進行時序的分析。模擬結果說明高度聚焦的超音波短脈衝,可用來作為超音波聲鉗的發射源,調控脈衝長度以及微粒大小之間的比例可改變不同大小之物體所受的輻射力,未來可望應用在微粒的篩選與分類。然而,此理論模型僅適用於遠大於波長的微粒,因此必須使用很高的超音波頻率(>100 MHz)才有可能控制微米級(~100 μm)的粒子,頻率高的超音波在活體組織傳遞時會有高度的衰減,高度聚焦的聲束僅允許針對單顆微粒進行操控,種種限制使得此形式的聲鉗不利進行活體內的操作。另一種單聲束聲鉗模型係以聲渦產生的位能井為基礎,適用於遠小於波長的微粒,因此可使用低頻的超音波(~1 MHz)來實現。模擬結果說明密度以及硬度較高的微粒,如果擁有足夠大的動能突破外圍的位能障礙,就可以被施予一個向內的輻射力(~60 pN)集中在聲渦的中央軸上,同時模擬結果也說明最佳的工作距離在聲渦的近場而非遠場。此形式超音波聲鉗雖只能進行橫向的二維操控,但在臨床藥物輸送運用上擁有更高的可行性及優勢。結合巨噬細胞以及聲渦式超音波聲鉗兩種策略來對超音波藥物載體進行主動式的輸送以及操控,將可望促進超音波標靶治療的發展。


    This dissertation describes research into strategies for active delivery and manipulation of ultrasound-controllable agents with the aim at improving the natural targeting regime that simply relies on hemodynamics. This first part of the dissertation investigates the feasibility of transporting phase-change drop-lets using macrophages and for prompt acoustic droplet vaporization (ADV) under ultrasound insonation. The cell-based delivery takes advantage of the homing ability of cellular vesicles toward specific targets in vivo. The droplets vaporized within single DLMs can coalesce into large bubbles upon the onset of vaporization. Inertial cavitation (IC) can be simultaneously induced upon the occurrence of bubbles, presumably in the early stage of bubble coalescence. Since the IC of bubbles has been reported to aid drug extravasation, and bubble coalescence may benefit vascular occlusion, the use of macrophage to transport PFP droplets toward tumors shows great promise for advancing the development of both drug delivery and ADV-based tumor therapies.
    The use of acoustic radiation forces may further enable the spatial control and acceleration of the cell-based delivery. Acoustic tweezers can exert radiation forces on microscale particles convergent on a specific region or point, and thus have been popularly used for non-invasive and non-contact particle manipulation. With good penetration ability in biological tissue, they show the promising prospective in vivo applications. The second part of the dissertation investigates two different theoretical models of acoustic tweezers valid in the Mie and Rayleigh regimes. The model valid in the Mie regime is the acoustic counterpart of optical tweezers, which may be used as a single-particle manipulator due to the use of a highly focused acoustic beam. It is proposed based on ray acoustics and permits time-course simulation of instantaneous forces exerted by highly focused acoustic pulses of arbitrary lengths. The results have suggested that short acoustic pulses exert negative forces to pull spheres located beyond the focus in the direction opposite to that of wave propagation. Regulating the acoustic pulse length relative to the sphere size can alter the force magnitudes, which may be useful in particle sorting applications. However, the Mie regime means that an ultrasound transducer with a very high acoustic frequency (>100MHz) should be used for microscale particles. The use of such high acoustic frequency may pose several disadvantages for in vivo manipulation including high attenuation and small focal area. Accordingly, the second model is proposed in the Rayleigh regime. A Laguerre-Gaussian beam with phase dislocation around its beam axis (i.e., acoustic vortex) has been theoretically shown to produce a force-potential well that can trap dense and stiff microparticles within the axial null. Inward radiation forces of up to tens of piconewtons are exerted at one-fourth the Rayleigh distance of the transducer. The presence of transverse trapping and the long working distance makes the model useful for two-dimensional manipulation, particularly in in vivo applications. The results support the feasibility of the potential-well model of acoustic tweezers, whose adaptability and flexibility are much superior to those of the first model. It shows great promise in active manipulation of ultrasound controllable vesicles for drug delivery applications.
    Combining these two strategies for active delivery and manipulation of ultrasound-controllable drug vesicles is expected to facilitate the development of ultrasound theranosis.

    Contents 中文摘要 vi Abstract viii List of Symbols xi List of Figures xiii List of Tables xix Chapter 1 1 Introduction 1.1 Need and Concept 1 1.2 Microbubbles as Ultrasound contrast agents (UCAs) 2 1.2.1 Commercial Products for Clinical Use 2 1.2.2 Contrast Enhanced Ultrasound (CEUS) Imaging 4 1.2.3 Nonlinear Properties of Microbubbles 4 1.2.4 Microbubble-Specific Contrast Imaging 6 1.3 Microbubbles in Theranostic Applications 7 1.3.1 Therapeutic Usefulness of Microbubble Cavitation 7 1.3.2 Drug-Loaded Microbubbles and Ultrasound-Controlled Release 9 1.3.3 Ultrasound Targeted Contrast Agents and Imaging 9 1.4 Challenges of Microbubbles as Theranostic Agents 10 1.5 Phase-Change Droplets as Microbubble Precursors 12 1.5.1 Principles of Superheated Droplets 12 1.5.2 Acoustic Droplet Vaporization (ADV) 14 1.5.3 Diagnostic Usefulness of ADV-Generated Microbubbles 19 1.5.4 Therapeutic Usefulness of ADV-Generated Microbubbles 20 1.5.5 Phase-Change Droplets as Theranostic Agents 22 1.6 Scope and Organization of The Dissertation 24 1.6.1 Importance of Active Delivery and Manipulation 24 1.6.2 Cell-Based Delivery Using Macrophages 27 1.6.3 Acoustic Tweezers for Particle Manipulation 28 Chapter 2 30 Intracellular Acoustic Droplet Vaporization in Peritoneal Macrophages for Drug Delivery Applications 2.1 Introduction 30 2.2 Materials and Methods 32 2.2.1 Droplet Preparation 32 2.2.2 Cell Preparation 33 2.2.3 Cell Assessment 34 2.2.4 High-Speed Photography and Cavitation Detection 35 2.2.5 Ultrasound Imaging of ADV-Generated Bubbles 37 2.3 Results 39 2.3.1 Cell Assessment 39 2.3.2 High-Speed Photography 40 2.3.3 High-Speed Photography and Cavitation Detections 42 2.3.4 Ultrasound Imaging of ADV-Generated Bubbles. 45 2.4 Summary 46 Chapter 3 47 Trapping of a Mie Sphere by Highly Focused Acoustic Pulses: Effects of Pulse Length 3.1 Introduction 47 3.2 Materials and Methods 50 3.2.1 Theories of Single-Beam Optical and Acoustic Tweezers 50 3.2.2 Modified Theory of Acoustic Tweezers 54 3.2.3 Simulation Conditions and Procedures 58 3.3 Results 61 3.3.1 Simulated Pulse-Wave Fields 61 3.3.2 Simulated Instantaneous and Average forces 62 3.3.3 Effects of Varying Pulse Length 65 3.3.4 Relationship between Pulse Length and Sphere Size 68 3.3.5 Interactions between Pulse Waves and Spheres 70 3.4 Summary 71 Chapter 4 73 Potential-Well Model in Acoustic Tweezer 4.1 Introduction 73 4.2 Materials and Methods 76 4.2.1 Transducer for Generating an Acoustic Vortex 76 4.2.2 Theory of Potential Energy and Radiation Force 78 4.2.3 Simulation Conditions 80 4.3 Results 80 4.3.1 Potential Distribution in the Simulated Acoustic Vortex 80 4.3.2 Radiation Force Distributions in Lateral Directions 84 4.3.3 Strategy for Reduction in Repulsive Forces 87 4.3.4 Radiation Force Distributions in Axial Directions 88 4.4 Summary 90 Chapter 5 92 Discussion 5.1 Intracellular ADV in Macrophages 92 5.2 Trapping by Highly Focused Acoustic Pulses 94 5.2.1 Comparisons with Previous Studies 94 5.2.2 Implications of the Simulation Results 96 5.2.3 Limitations 97 5.3 Potential-Well Acoustic Tweezers 98 5.3.1 Implications of the Simulation Results 98 5.3.2 Rationality of the Simulation Results 101 5.3.3 Possible Usefulness in In Vivo Manipulation 102 5.3.4 Considerations for Transducer Design 103 5.3.5 Limitations 104 5.3.6 Considerations for Agents Design 105 Chapter 6 106 Conclusions and Future Work References 111 Publication List 131

    [1] J. J. Chen, C. S. Chiang, J. H. Hong, and C. K. Yeh, "Assessment of tumor vasculature for diagnostic and therapeutic applications in a mouse model in vivo using 25-MHz power Doppler imaging," Ultrasonics, vol. 51, no. 8, pp. 925-931, Dec 2011.
    [2] I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, "Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound," J. Am. Coll. Cardiol., vol. 39, no. 4, pp. 604-609, Feb 20 2002.
    [3] C. R. Joyner, Jr. and J. M. Reid, "Applications of ultrasound in cardiology and cardiovascular physiology," Prog. Cardiovasc. Dis., vol. 5, pp. 482-497, Mar 1963.
    [4] Y. Y. Liao, P. H. Tsui, C. H. Li, K. J. Chang, W. H. Kuo, C. C. Chang, and C. K. Yeh, "Classification of scattering media within benign and malignant breast tumors based on ultrasound texture-feature-based and Nakagami-parameter images," Med. Phys., vol. 38, no. 4, pp. 2198-2207, Apr 2011.
    [5] C. K. Yeh, J. J. Chen, M. L. Li, and J. J. Luh, "In vivo imaging of blood flow in the mouse Achilles tendon using high-frequency ultrasound," Ultrasonics, vol. 49, no. 2, pp. 226-230, Feb 2009.
    [6] T. Browder, C. E. Butterfield, B. M. Kraling, B. Shi, B. Marshall, M. S. O'Reilly, and J. Folkman, "Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer," Cancer Res., vol. 60, no. 7, pp. 1878-1886, Apr 1 2000.
    [7] J. Folkman, "New perspectives in clinical oncology from angiogenesis research," Eur. J. Cancer, vol. 32A, no. 14, pp. 2534-2539, Dec 1996.
    [8] R. S. Kerbel, "Tumor angiogenesis: past, present and the near future," Carcinogenesis, vol. 21, no. 3, pp. 505-515, Mar 2000.
    [9] A. M. Schor and S. L. Schor, "Tumour angiogenesis," J. Pathol., vol. 141, no. 3, pp. 385-413, Nov 1983.
    [10] R. Gramiak and P. M. Shah, "Echocardiography of the aortic root," Invest. Radiol., vol. 3, no. 5, pp. 356-366, Sep-Oct 1968.
    [11] E. Quaia, "Microbubble ultrasound contrast agents: an update," Eur. Radiol., vol. 17, no. 8, pp. 1995-2008, Aug 2007.
    [12] P. A. Dayton and K. W. Ferrara, "Targeted imaging using ultrasound," J Magn. Reson. Imaging, vol. 16, no. 4, pp. 362-377, Oct 2002.
    [13] F. S. Foster, P. N. Burns, D. H. Simpson, S. R. Wilson, D. A. Christopher, and D. E. Goertz, "Ultrasound for the visualization and quantification of tumor microcirculation," Cancer Metastasis Rev., vol. 19, no. 1-2, pp. 131-138, 2000.
    [14] J. L. Cohen, J. Cheirif, D. S. Segar, L. D. Gillam, J. S. Gottdiener, E. Hausnerova, and D. E. Bruns, "Improved left ventricular endocardial border delineation and opacification with OPTISON (FS069), a new echocardiographic contrast agent. Results of a phase III Multicenter Trial," J. Am. Coll. Cardiol., vol. 32, no. 3, pp. 746-752, Sep 1998.
    [15] M. W. Keller, S. B. Feinstein, and D. D. Watson, "Successful left ventricular opacification following peripheral venous injection of sonicated contrast agent: an experimental evaluation," Am. Heart J., vol. 114, no. 3, pp. 570-575, Sep 1987.
    [16] F. Ries, C. Honisch, M. Lambertz, and R. Schlief, "A transpulmonary contrast medium enhances the transcranial Doppler signal in humans," Stroke; a journal of cerebral circulation, vol. 24, no. 12, pp. 1903-1909, Dec 1993.
    [17] C. J. Harvey, M. J. Blomley, R. J. Eckersley, D. O. Cosgrove, N. Patel, R. A. Heckemann, and J. Butler-Barnes, "Hepatic malignancies: improved detection with pulse-inversion US in late phase of enhancement with SH U 508A-early experience," Radiology, vol. 216, no. 3, pp. 903-908, Sep 2000.
    [18] P. Hauff, T. Fritzsch, M. Reinhardt, W. Weitschies, F. Luders, V. Uhlendorf, and D. Heldmann, "Delineation of experimental liver tumors in rabbits by a new ultrasound contrast agent and stimulated acoustic emission," Invest. Radiol., vol. 32, no. 2, pp. 94-99, Feb 1997.
    [19] E. Quaia, F. Calliada, M. Bertolotto, S. Rossi, L. Garioni, L. Rosa, and R. Pozzi-Mucelli, "Characterization of focal liver lesions with contrast-specific US modes and a sulfur hexafluoride-filled microbubble contrast agent: diagnostic performance and confidence," Radiology, vol. 232, no. 2, pp. 420-430, Aug 2004.
    [20] J. R. Arnold, T. D. Karamitsos, T. J. Pegg, J. M. Francis, R. Olszewski, N. Searle, R. Senior, S. Neubauer, H. Becher, and J. B. Selvanayagam, "Adenosine stress myocardial contrast echocardiography for the detection of coronary artery disease: a comparison with coronary angiography and cardiac magnetic resonance," JACC-Cardiovasc Imag., vol. 3, no. 9, pp. 934-943, Sep 2010.
    [21] J. Correas, O. Helenon, and J. F. Moreau, "Contrast-enhanced ultrasonography of native and transplanted kidney diseases," Eur. Radiol., vol. 9 Suppl 3, pp. S394-400, 1999.
    [22] J. P. Eiberg, M. A. Hansen, F. Jensen, J. B. Rasmussen, and T. V. Schroeder, "Ultrasound contrast-agent improves imaging of lower limb occlusive disease," Eur. J. Vasc. Endovasc. Surg., vol. 25, no. 1, pp. 23-28, Jan 2003.
    [23] J. Hancock, H. Dittrich, D. E. Jewitt, and M. J. Monaghan, "Evaluation of myocardial, hepatic, and renal perfusion in a variety of clinical conditions using an intravenous ultrasound contrast agent (Optison) and second harmonic imaging," Heart, vol. 81, no. 6, pp. 636-641, Jun 1999.
    [24] SonoVue : EPAR - Product Information. Available: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000303/WC500055380.pdf
    [25] Luminity : EPAR - Product Information. Available: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000654/WC500045020.pdf
    [26] Optison : EPAR - Product Information. Available: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000166/WC500059461.pdf
    [27] K. Wei, A. R. Jayaweera, S. Firoozan, A. Linka, D. M. Skyba, and S. Kaul, "Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion," Circulation, vol. 97, no. 5, pp. 473-483, Feb 10 1998.
    [28] C. K. Yeh, K. W. Ferrara, and D. E. Kruse, "High-resolution functional vascular assessment with ultrasound," IEEE Trans. Med. Imaging, vol. 23, no. 10, pp. 1263-1275, Oct 2004.
    [29] C. K. Yeh, S. Y. Lu, and Y. S. Chen, "Micro circulation volumetric flow assessment using high-resolution, contrast-assisted images," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 1, pp. 74-83, Jan 2008.
    [30] K. E. Morgan, J. S. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibaov, and K. W. Ferrara, "Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 6, pp. 1494-1509, 2000.
    [31] W. T. Shi and F. Forsberg, "Ultrasonic characterization of the nonlinear properties of contrast microbubbles," Ultrasound in medicine & biology, vol. 26, no. 1, pp. 93-104, Jan 2000.
    [32] W. Lauterborn and W. Hentschel, "Cavitation Bubble Dynamics Studied by High-Speed Photography and Holography .2.," Ultrasonics, vol. 24, no. 2, pp. 59-65, Mar 1986.
    [33] W. Lauterborn and W. Hentschel, "Cavitation Bubble Dynamics Studied by High-Speed Photography and Holography .1.," Ultrasonics, vol. 23, no. 6, pp. 260-268, 1985.
    [34] J. E. Chomas, P. A. Dayton, D. May, J. Allen, A. Klibanov, and K. Ferrara, "Optical observation of contrast agent destruction," Appl Phys Lett, vol. 77, no. 7, pp. 1056-1058, Aug 14 2000.
    [35] P. A. Dijkmans, L. J. Juffermans, R. J. Musters, A. van Wamel, F. J. ten Cate, W. van Gilst, C. A. Visser, N. de Jong, and O. Kamp, "Microbubbles and ultrasound: from diagnosis to therapy," Eur. J. Echocardiogr., vol. 5, no. 4, pp. 245-256, Aug 2004.
    [36] A. Bouakaz, S. Frigstad, F. J. Ten Cate, and N. de Jong, "Super harmonic imaging: a new imaging technique for improved contrast detection," Ultrasound in medicine & biology, vol. 28, no. 1, pp. 59-68, Jan 2002.
    [37] F. Forsberg, W. T. Shi, and B. B. Goldberg, "Subharmonic imaging of contrast agents," Ultrasonics, vol. 38, no. 1-8, pp. 93-98, Mar 2000.
    [38] L. Ziegler and R. T. O'Brien, "Harmonic ultrasound: a review," Vet. Radiol. Ultrasound, vol. 43, no. 6, pp. 501-509, Nov-Dec 2002.
    [39] P. N. Burns, S. R. Wilson, and D. H. Simpson, "Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast," Invest. Radiol., vol. 35, no. 1, pp. 58-71, Jan 2000.
    [40] G. A. Husseini, M. A. Diaz de la Rosa, E. S. Richardson, D. A. Christensen, and W. G. Pitt, "The role of cavitation in acoustically activated drug delivery," J. Control Release, vol. 107, no. 2, pp. 253-261, Oct 3 2005.
    [41] C. K. Holland and R. E. Apfel, "An improved theory for the prediction of microcavitation thresholds," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 36, no. 2, pp. 204-208, 1989.
    [42] G. Basta, L. Venneri, G. Lazzerini, E. Pasanisi, M. Pianelli, N. Vesentini, S. Del Turco, C. Kusmic, and E. Picano, "In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound," Cardiovasc. Res., vol. 58, no. 1, pp. 156-161, Apr 1 2003.
    [43] L. L. Rubin and J. M. Staddon, "The cell biology of the blood-brain barrier," Annu. Rev. Neurosci., vol. 22, pp. 11-28, 1999.
    [44] M. Kinoshita, N. McDannold, F. A. Jolesz, and K. Hynynen, "Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption," Proc. Natl. Acad. Sci. U. S. A., vol. 103, no. 31, pp. 11719-11723, Aug 1 2006.
    [45] H. L. Liu, M. Y. Hua, P. Y. Chen, P. C. Chu, C. H. Pan, H. W. Yang, C. Y. Huang, J. J. Wang, T. C. Yen, and K. C. Wei, "Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment," Radiology, vol. 255, no. 2, pp. 415-425, May 2010.
    [46] N. McDannold, N. Vykhodtseva, S. Raymond, F. A. Jolesz, and K. Hynynen, "MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits," Ultrasound in medicine & biology, vol. 31, no. 11, pp. 1527-1537, Nov 2005.
    [47] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, "Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits," Radiology, vol. 220, no. 3, pp. 640-646, Sep 2001.
    [48] K. Hynynen, N. McDannold, N. Vykhodtseva, and F. A. Jolesz, "Non-invasive opening of BBB by focused ultrasound," Acta Neurochir. Suppl., vol. 86, pp. 555-558, 2003.
    [49] D. M. Skyba, R. J. Price, A. Z. Linka, T. C. Skalak, and S. Kaul, "Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue," Circulation, vol. 98, no. 4, pp. 290-293, Jul 28 1998.
    [50] M. Reinhard, A. Hetzel, S. Kruger, S. Kretzer, J. Talazko, S. Ziyeh, J. Weber, and T. Els, "Blood-brain barrier disruption by low-frequency ultrasound," Stroke; a journal of cerebral circulation, vol. 37, no. 6, pp. 1546-1548, Jun 2006.
    [51] M. C. Cochran, J. Eisenbrey, R. O. Ouma, M. Soulen, and M. A. Wheatley, "Doxorubicin and paclitaxel loaded microbubbles for ultrasound triggered drug delivery," Int. J. Pharm., vol. 414, no. 1-2, pp. 161-170, Jul 29 2011.
    [52] J. Kang, X. Wu, Z. Wang, H. Ran, C. Xu, J. Wu, and Y. Zhang, "Antitumor effect of docetaxel-loaded lipid microbubbles combined with ultrasound-targeted microbubble activation on VX2 rabbit liver tumors," J. Ultrasound Med., vol. 29, no. 1, pp. 61-70, Jan 2010.
    [53] S. Tinkov, C. Coester, S. Serba, N. A. Geis, H. A. Katus, G. Winter, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: in-vivo characterization," J. Control Release, vol. 148, no. 3, pp. 368-372, Dec 20 2010.
    [54] S. Tinkov, G. Winter, C. Coester, and R. Bekeredjian, "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I--Formulation development and in-vitro characterization," J. Control Release, vol. 143, no. 1, pp. 143-150, Apr 2 2010.
    [55] M. S. Tartis, J. McCallan, A. F. Lum, R. LaBell, S. M. Stieger, T. O. Matsunaga, and K. W. Ferrara, "Therapeutic effects of paclitaxel-containing ultrasound contrast agents," Ultrasound in medicine & biology, vol. 32, no. 11, pp. 1771-1780, Nov 2006.
    [56] J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, "A study of the formulation design of acoustically active lipospheres as carriers for drug delivery," Eur. J. Pharm. Biopharm., vol. 67, no. 1, pp. 67-75, Aug 2007.
    [57] I. Lentacker, B. Geers, J. Demeester, S. C. De Smedt, and N. N. Sanders, "Design and evaluation of doxorubicin-containing microbubbles for ultrasound-triggered doxorubicin delivery: cytotoxicity and mechanisms involved," Mol. Ther., vol. 18, no. 1, pp. 101-108, Jan 2010.
    [58] M. J. Shortencarier, P. A. Dayton, S. H. Bloch, P. A. Schumann, T. O. Matsunaga, and K. W. Ferrara, "A method for radiation-force localized drug delivery using gas-filled lipospheres," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 7, pp. 822-831, Jul 2004.
    [59] I. Lentacker, S. C. De Smedt, J. Demeester, V. Van Marck, M. Bracke, and N. N. Sanders, "Lipoplex-loaded microbubbles for gene delivery: A Trojan horse controlled by ultrasound," Adv. Funct. Mater., vol. 17, no. 12, pp. 1910-1916, Aug 13 2007.
    [60] S. Chen, J. H. Ding, R. Bekeredjian, B. Z. Yang, R. V. Shohet, S. A. Johnston, H. E. Hohmeier, C. B. Newgard, and P. A. Grayburn, "Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology," On the acoustic radiation pressure on spheres, vol. 103, no. 22, pp. 8469-8474, May 30 2006.
    [61] G. M. Lanza and S. A. Wickline, "Targeted ultrasonic contrast agents for molecular imaging and therapy," Curr. Probl. Cardiol., vol. 28, no. 12, pp. 625-653, Dec 2003.
    [62] C. H. Wang, Y. F. Huang, and C. K. Yeh, "Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging," Langmuir : the ACS journal of surfaces and colloids, vol. 27, no. 11, pp. 6971-6976, Jun 7 2011.
    [63] P. A. Schumann, J. P. Christiansen, R. M. Quigley, T. P. McCreery, R. H. Sweitzer, E. C. Unger, J. R. Lindner, and T. O. Matsunaga, "Targeted-microbubble binding selectively to GPIIb IIIa receptors of platelet thrombi," Invest. Radiol., vol. 37, no. 11, pp. 587-593, Nov 2002.
    [64] F. S. Villanueva, R. J. Jankowski, S. Klibanov, M. L. Pina, S. M. Alber, S. C. Watkins, G. H. Brandenburger, and W. R. Wagner, "Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells," Circulation, vol. 98, no. 1, pp. 1-5, Jul 7 1998.
    [65] J. R. Lindner, J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul, "Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes," Circulation, vol. 102, no. 22, pp. 2745-2750, Nov 28 2000.
    [66] J. R. Lindner, "Contrast ultrasound molecular imaging of inflammation in cardiovascular disease," Cardiovasc. Res., vol. 84, no. 2, pp. 182-189, Nov 1 2009.
    [67] M. A. Borden and M. L. Longo, "Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length," Langmuir : the ACS journal of surfaces and colloids, vol. 18, no. 24, pp. 9225-9233, Nov 26 2002.
    [68] R. S. Meltzer, E. G. Tickner, and R. L. Popp, "Why Do the Lungs Clear Ultrasonic Contrast," Ultrasound in medicine & biology, vol. 6, no. 3, pp. 263-269, 1980.
    [69] R. E. Apfel, "Activatable infusable dispersions containing drops of a superheated liquid for methods of therapy and diagnosis," United States Patent 5,840,276, 1998.
    [70] N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles," J. Control Release, vol. 138, no. 3, pp. 268-276, Sep 15 2009.
    [71] O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, "Acoustic droplet vaporization for therapeutic and diagnostic applications," Ultrasound in medicine & biology, vol. 26, no. 7, pp. 1177-1189, Sep 2000.
    [72] Z. Z. Wong, O. D. Kripfgans, A. Qamar, J. B. Fowlkes, and J. L. Bull, "Bubble evolution in acoustic droplet vaporization at physiological temperature via ultra-high speed imaging," Soft Matter, vol. 7, no. 8, pp. 4009-4016, 2011.
    [73] K. J. Haworth and O. D. Kripfgans, "Initial growth and coalescence of acoustically vaporized perfluorocarbon microdroplets," IEEE Int. Ultrason. Symp. Proc., pp. 623-626, 2008.
    [74] N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, "Microbubble generation in phase-shift nanoemulsions used as anticancer drug carriers," Bubble Sci. Eng. Technol., vol. 1, no. 1-2, pp. 31-39, 2009.
    [75] N. Reznik, M. Seo, R. Williams, E. Bolewska-Pedyczak, M. Lee, N. Matsuura, J. Gariepy, F. S. Foster, and P. N. Burns, "Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets," Phys. Med. Biol., vol. 57, no. 21, pp. 7205-7217, Nov 7 2012.
    [76] M. L. Fabiilli, K. J. Haworth, N. H. Fakhri, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "The role of inertial cavitation in acoustic droplet vaporization," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 56, no. 5, pp. 1006-1017, May 2009.
    [77] K.-i. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S.-i. Umemura, "Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting," Jpn. J. Appl. Phys., vol. 44, no. 6B, pp. 4548-4552, 2005.
    [78] N. Reznik, R. Williams, and P. N. Burns, "Investigation of Vaporized Submicron Perfluorocarbon Droplets as an Ultrasound Contrast Agent," Ultrasound in medicine & biology, vol. 37, no. 8, pp. 1271-1279, Aug 2011.
    [79] P. Zhang and T. Porter, "An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation," Ultrasound in medicine & biology, vol. 36, no. 11, pp. 1856-1866, Nov 2010.
    [80] O. D. Kripfgans, J. B. Fowlkes, M. Woydt, O. P. Eldevik, and P. L. Carson, "In vivo droplet vaporization for occlusion therapy and phase aberration correction," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, no. 6, pp. 726-738, Jun 2002.
    [81] A. H. Lo, O. D. Kripfgans, P. L. Carson, E. D. Rothman, and J. B. Fowlkes, "Acoustic droplet vaporization threshold: effects of pulse duration and contrast agent," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 54, no. 5, pp. 933-946, May 2007.
    [82] O. D. Kripfgans, M. L. Fabiilli, P. L. Carson, and J. B. Fowlkes, "On the acoustic vaporization of micrometer-sized droplets," J. Acoust. Soc. Am., vol. 116, no. 1, pp. 272-281, Jul 2004.
    [83] N. Matsuura, R. Williams, I. Gorelikov, J. Chaudhuri, J. Rowlands, K. Hynynen, S. Foster, P. Burns, and N. Resnik, "Nanoparticle-loaded perfluorocarbon droplets for imaging and therapy," IEEE Int. Ultrason. Symp. Proc., pp. 5-8, 2009.
    [84] M. Javadi, W. G. Pitt, D. M. Belnap, N. H. Tsosie, and J. M. Hartley, "Encapsulating Nanoemulsions Inside eLiposomes for Ultrasonic Drug Delivery," Langmuir : the ACS journal of surfaces and colloids, vol. 28, no. 41, pp. 14720-14729, Oct 16 2012.
    [85] R. Singh, G. A. Husseini, and W. G. Pitt, "Phase transitions of nanoemulsions using ultrasound: Experimental observations," Ultrason. Sonochem., vol. 19, no. 5, pp. 1120-1125, Sep 2012.
    [86] G. Kuiper, "Cavitation research and ship propeller design," Appl. Sci. Res., vol. 58, no. 1-4, pp. 33-50, 1998.
    [87] P. S. Sheeran, S. Luois, P. A. Dayton, and T. O. Matsunaga, "Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound," Langmuir : the ACS journal of surfaces and colloids, vol. 27, no. 17, pp. 10412-10420, Sep 6 2011.
    [88] P. S. Sheeran, V. P. Wong, S. Luois, R. J. McFarland, W. D. Ross, S. Feingold, T. O. Matsunaga, and P. A. Dayton, "Decafluorobutane as a phase-change contrast agent for low-energy extravascular ultrasonic imaging," Ultrasound in medicine & biology, vol. 37, no. 9, pp. 1518-1530, Sep 2011.
    [89] M. Seo and N. Matsuura, "Monodisperse, Submicrometer Droplets via Condensation of Microfluidic-Generated Gas Bubbles," Small, vol. 8, no. 17, pp. 2704-2714, Sep 10 2012.
    [90] K. J. Haworth, J. B. Fowlkes, P. L. Carson, and O. D. Kripfgans, "Towards aberration correction of transcranial ultrasound using acoustic droplet vaporization," Ultrasound in medicine & biology, vol. 34, no. 3, pp. 435-445, Mar 2008.
    [91] C. M. Carneal, O. D. Kripfgans, J. Krucker, P. L. Carson, and J. B. Fowlkes, "A tissue-mimicking ultrasound test object using droplet vaporization to create point targets," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 9, pp. 2013-2025, Sep 2011.
    [92] A. Qamar, Z. Z. Wong, J. B. Fowlkes, and J. L. Bull, "Dynamics of acoustic droplet vaporization in gas embolotherapy," Appl. Phys. Lett., vol. 96, no. 14, p. 143702, Apr 5 2010.
    [93] N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, "Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers," Ultrasound in medicine & biology, vol. 36, no. 3, pp. 419-429, Mar 2010.
    [94] K. Kawabata, R. Asami, T. Azuma, and S. Umemura, "Acoustic response of microbubbles derived from phase-change nanodroplet," Jpn. J. Appl. Phys., vol. 49, no. 7, 2010.
    [95] G. Hu, M. Lijowski, H. Zhang, K. C. Partlow, S. D. Caruthers, G. Kiefer, G. Gulyas, P. Athey, M. J. Scott, S. A. Wickline, and G. M. Lanza, "Imaging of Vx-2 rabbit tumors with alpha(nu)beta3-integrin-targeted 111In nanoparticles," Int. J. Cancer, vol. 120, no. 9, pp. 1951-1957, May 1 2007.
    [96] K. C. Lowe, "Perfluorochemical respiratory gas carriers: applications in medicine and biotechnology," Sci. Prog., vol. 80 ( Pt 2), pp. 169-193, 1997.
    [97] O. D. Kripfgans, C. M. Orifici, P. L. Carson, K. A. Ives, O. P. Eldevik, and J. B. Fowlkes, "Acoustic droplet vaporization for temporal and spatial control of tissue occlusion: a kidney study," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 7, pp. 1101-1110, Jul 2005.
    [98] M. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, "Initial investigation of acoustic droplet vaporization for occlusion in canine kidney," Ultrasound in medicine & biology, vol. 36, no. 10, pp. 1691-1703, Oct 2010.
    [99] S. Samuel, A. Duprey, M. L. Fabiilli, J. L. Bull, and J. B. Fowlkes, "In vivo microscopy of targeted vessel occlusion employing acoustic droplet vaporization," Microcirculation, vol. 19, no. 6, pp. 501-509, Aug 2012.
    [100] D. Kalman and E. Varenhorst, "The role of arterial embolization in renal cell carcinoma," Scand. J. Urol. Nephrol., vol. 33, no. 3, pp. 162-170, Jun 1999.
    [101] J. A. Goode and M. B. Matson, "Embolisation of cancer: what is the evidence?," Cancer imaging : the official publication of the International Cancer Imaging Society, vol. 4, no. 2, pp. 133-141, 2004.
    [102] R. D. Baird and S. B. Kaye, "Drug resistance reversal—are we getting closer?," Eur. J. Cancer, vol. 39, no. 17, pp. 2450-2461, 2003.
    [103] M. A. Avila, C. Berasain, B. Sangro, and J. Prieto, "New therapies for hepatocellular carcinoma," Oncogene, vol. 25, no. 27, pp. 3866-3884, Jun 26 2006.
    [104] A. J. Calderon, Y. S. Heo, D. Huh, N. Futai, S. Takayama, J. B. Fowlkes, and J. L. Bull, "Microfluidic model of bubble lodging in microvessel bifurcations," Appl. Phys. Lett., vol. 89, no. 24, p. 244103, Dec 11 2006.
    [105] K.-i. Kawabata, R. Asami, T. Azuma, H. Yoshikawa, and S.-i. Umemura, "Cavitation assisted HIFU with phase-change nano droplet," IEEE Int. Ultrason. Symp. Proc., pp. 780-783, 2008.
    [106] K.-i. Kawabata, R. Asami, T. Azuma, H. Yoshikawa, and S.-i. Umemura, "Anti-tumor effects of cavitation induced with phase-change nano droplet and ultrasound," IEEE Int. Ultrason. Symp. Proc., pp. 208-211, 2009.
    [107] M. Zhang, M. Fabiilli, P. Carson, F. Padilla, S. Swanson, O. Kripfgans, and B. Fowlkes, "Acoustic droplet vaporization for the enhancement of ultrasound thermal therapy," IEEE Ultrason. Symp. Proc., vol. 2010, pp. 221-224, Oct 11 2010.
    [108] M. Zhang, M. L. Fabiilli, K. J. Haworth, F. Padilla, S. D. Swanson, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Acoustic droplet vaporization for enhancement of thermal ablation by high intensity focused ultrasound," Acad. Radiol., vol. 18, no. 9, pp. 1123-1132, Sep 2011.
    [109] A. H. Lo, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Spatial control of gas bubbles and their effects on acoustic fields," Ultrasound in medicine & biology, vol. 32, no. 1, pp. 95-106, Jan 2006.
    [110] P. A. Dayton, S. Zhao, S. H. Bloch, P. Schumann, K. Penrose, T. O. Matsunaga, R. Zutshi, A. Doinikov, and K. W. Ferrara, "Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy," Mol. Imaging, vol. 5, no. 3, pp. 160-174, Jul 2006.
    [111] M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Delivery of Chlorambucil Using an Acoustically-Triggered Perfluoropentane Emulsion," Ultrasound in medicine & biology, vol. 36, no. 8, pp. 1364-1375, Aug 2010.
    [112] N. Rapoport, Z. Gao, and A. Kennedy, "Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy," J Natl Cancer I, vol. 99, no. 14, pp. 1095-1106, Jul 18 2007.
    [113] C. H. Wang, S. T. Kang, Y. H. Lee, Y. L. Luo, Y. F. Huang, and C. K. Yeh, "Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis," Biomaterials, vol. 33, no. 6, pp. 1939-1947, Feb 2012.
    [114] C. H. Wang, S. T. Kang, and C. K. Yeh, "Superparamagnetic iron oxide and drug complex-embedded acoustic droplets for ultrasound targeted theranosis," Biomaterials, vol. 34, no. 7, pp. 1852-1861, Feb 2013.
    [115] M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, "Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions," Pharm Res-Dordr, vol. 27, no. 12, pp. 2753-2765, Dec 2010.
    [116] K. C. Crowder, M. S. Hughes, J. N. Marsh, A. M. Barbieri, R. W. Fuhrhop, G. M. Lanza, and S. A. Wickline, "Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: Implications for enhanced local drug delivery," Ultrasound in medicine & biology, vol. 31, no. 12, pp. 1693-1700, Dec 2005.
    [117] K. C. Partlow, G. M. Lanza, and S. A. Wickline, "Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery," Biomaterials, vol. 29, no. 23, pp. 3367-3375, Aug 2008.
    [118] N. Soman, J. Marsh, G. Lanza, and S. Wickline, "New mechanisms for non-porative ultrasound stimulation of cargo delivery to cell cytosol with targeted perfluorocarbon nanoparticles," Nanotechnology, vol. 19, no. 18, May 7 2008.
    [119] S. J. Lee, P. H. Schlesinger, S. A. Wickline, G. M. Lanza, and N. A. Baker, "Simulation of fusion-mediated nanoemulsion interactions with model lipid bilayers," Soft Matter, vol. 8, no. 26, pp. 3024-3035, Jan 1 2012.
    [120] B. Venegas, M. R. Wolfson, P. H. Cooke, and P. L. Chong, "High vapor pressure perfluorocarbons cause vesicle fusion and changes in membrane packing," Biophys. J., vol. 95, no. 10, pp. 4737-4747, Nov 15 2008.
    [121] H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, "Openings between defective endothelial cells explain tumor vessel leakiness," Am. J. Pathol., vol. 156, no. 4, pp. 1363-1380, Apr 2000.
    [122] D. J. Goetz, D. M. Greif, H. Ding, R. T. Camphausen, S. Howes, K. M. Comess, K. R. Snapp, G. S. Kansas, and F. W. Luscinskas, "Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin," J. Cell Biol., vol. 137, no. 2, pp. 509-519, Apr 21 1997.
    [123] S. D. Rodgers, R. T. Camphausen, and D. A. Hammer, "Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin," Biophys. J., vol. 79, no. 2, pp. 694-706, Aug 2000.
    [124] A. M. Takalkar, A. L. Klibanov, J. J. Rychak, J. R. Lindner, and K. Ley, "Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow," J. Control Release, vol. 96, no. 3, pp. 473-482, May 18 2004.
    [125] M. C. Bosco, M. Puppo, F. Blengio, T. Fraone, P. Cappello, M. Giovarelli, and L. Varesio, "Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration," Immunobiology, vol. 213, no. 9-10, pp. 733-749, 2008.
    [126] B. Hall, J. Dembinski, A. K. Sasser, M. Studeny, M. Andreeff, and F. Marini, "Mesenchymal stem cells in cancer: tumor-associated fibroblasts and cell-based delivery vehicles," Int. J. Hematol., vol. 86, no. 1, pp. 8-16, Jul 2007.
    [127] X. Huang, F. Zhang, H. Wang, G. Niu, K. Y. Choi, M. Swierczewska, G. Zhang, H. Gao, Z. Wang, L. Zhu, H. S. Choi, S. Lee, and X. Chen, "Mesenchymal stem cell-based cell engineering with multifunctional mesoporous silica nanoparticles for tumor delivery," Biomaterials, vol. 34, no. 7, pp. 1772-1780, Feb 2013.
    [128] M. Roger, A. Clavreul, M. C. Venier-Julienne, C. Passirani, L. Sindji, P. Schiller, C. Montero-Menei, and P. Menei, "Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors," Biomaterials, vol. 31, no. 32, pp. 8393-8401, Nov 2010.
    [129] M. Studeny, F. C. Marini, J. L. Dembinski, C. Zompetta, M. Cabreira-Hansen, B. N. Bekele, R. E. Champlin, and M. Andreeff, "Mesenchymal stem cells: Potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents," J Natl Cancer I, vol. 96, no. 21, pp. 1593-1603, Nov 3 2004.
    [130] D. H. Zhao, J. Najbauer, E. Garcia, M. Z. Metz, M. Gutova, C. A. Glackin, S. U. Kim, and K. S. Aboody, "Neural stem cell tropism to glioma: critical role of tumor hypoxia," Mol. Cancer Res., vol. 6, no. 12, pp. 1819-1829, Dec 2008.
    [131] L. Danielyan, R. Schafer, A. von Ameln-Mayerhofer, M. Buadze, J. Geisler, T. Klopfer, U. Burkhardt, B. Proksch, S. Verleysdonk, M. Ayturan, G. H. Buniatian, C. H. Gleiter, and W. H. Frey, "Intranasal delivery of cells to the brain," Eur. J. Cell Biol., vol. 88, no. 6, pp. 315-324, Jun 2009.
    [132] H. Y. Dou, C. B. Grotepas, J. M. McMillan, C. J. Destache, M. Chaubal, J. Werling, J. Kipp, B. Rabinow, and H. E. Gendelman, "Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroaids," J. Immunol., vol. 183, no. 1, pp. 661-669, Jul 1 2009.
    [133] F. J. Muller, E. Y. Snyder, and J. F. Loring, "Gene therapy: can neural stem cells deliver?," Nat. Rev. Neurosci., vol. 7, no. 1, pp. 75-84, Jan 2006.
    [134] A. O. El-Sadik, A. El-Ansary, and S. M. Sabry, "Nanoparticle-labeled stem cells: a novel therapeutic vehicle," Clin. Pharmacol., vol. 2, pp. 9-16, 2010.
    [135] F. Pierige, S. Serafini, L. Rossi, and A. Magnani, "Cell-based drug delivery," Adv. Drug Deliver. Rev., vol. 60, no. 2, pp. 286-295, Jan 14 2008.
    [136] S. T. Kang and C. K. Yeh, "Intracellular acoustic droplet vaporization in a single peritoneal macrophage for drug delivery applications," Langmuir, vol. 27, no. 21, pp. 13183-13188, Nov 1 2011.
    [137] J. J. Rychak, A. L. Klibanov, and J. A. Hossack, "Acoustic radiation force enhances targeted delivery of ultrasound contrast microbubbles: in vitro verification," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 3, pp. 421-433, Mar 2005.
    [138] H. M. Hertz, "Standing-Wave Acoustic Trap for Nonintrusive Positioning of Microparticles," J. Appl. Phys., vol. 78, no. 8, pp. 4845-4849, Oct 15 1995.
    [139] J. Hu and A. K. Santoso, "A pi-shaped ultrasonic tweezers concept for manipulation of small particles," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, no. 11, pp. 1499-1507, Nov 2004.
    [140] J. R. Wu, "Acoustical tweezers," J. Acoust. Soc. Am., vol. 89, no. 5, pp. 2140-2143, May 1991.
    [141] A. Ashkin, "Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime," Methods Cell Biol., vol. 55, pp. 1-27, 1998.
    [142] D. G. Grier, "A revolution in optical manipulation," Nature, vol. 424, no. 6950, pp. 810-816, Aug 14 2003.
    [143] O. Falou, M. Rui, A. El Kaffas, J. C. Kumaradas, and M. C. Kolios, "The measurement of ultrasound scattering from individual micron-sized objects and its application in single cell scattering," J. Acoust. Soc. Am., vol. 128, no. 2, pp. 894-902, Aug 2010.
    [144] K. T. Gahagan and G. A. Swartzlander, "Trapping of low-index microparticles in an optical vortex," J. Opt. Soc. Am. B: Opt. Phys., vol. 15, no. 2, pp. 524-534, Feb 1998.
    [145] S. T. Kang and C. K. Yeh, "Potential-well model in acoustic tweezers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 6, pp. 1451-1459, Jun 2010.
    [146] S. T. Chen, T. L. Pan, H. F. Juan, T. Y. Chen, Y. S. Lin, and C. M. Huang, "Breast tumor microenvironment: proteomics highlights the treatments targeting secretome," J. Proteome Res., vol. 7, no. 4, pp. 1379-1387, Apr 2008.
    [147] S. J. Lunt, N. Chaudary, and R. P. Hill, "The tumor microenvironment and metastatic disease," Clin. Exp. Metastasis, vol. 26, no. 1, pp. 19-34, 2009.
    [148] A. I. Minchinton and I. F. Tannock, "Drug penetration in solid tumours," Nat. Rev. Cancer, vol. 6, no. 8, pp. 583-592, Aug 2006.
    [149] O. Tredan, C. M. Galmarini, K. Patel, and I. F. Tannock, "Drug resistance and the solid tumor microenvironment," J Natl Cancer I, vol. 99, no. 19, pp. 1441-1454, Oct 3 2007.
    [150] M. Muthana, A. Giannoudis, S. D. Scott, H. Y. Fang, S. B. Coffelt, F. J. Morrow, C. Murdoch, J. Burton, N. Cross, B. Burke, R. Mistry, F. Hamdy, N. J. Brown, L. Georgopoulos, P. Hoskin, M. Essand, C. E. Lewis, and N. J. Maitland, "Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors," Cancer Res., vol. 71, no. 5, pp. 1805-1815, Mar 1 2011.
    [151] P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, and K. W. Ferrara, "Optical and acoustical dynamics of microbubble contrast agents inside neutrophils," Biophys. J., vol. 80, no. 3, pp. 1547-1556, Mar 2001.
    [152] D. L. Miller and C. Dou, "Membrane damage thresholds for 1- to 10-MHz pulsed ultrasound exposure of phagocytic cells loaded with contrast agent gas bodies in vitro," Ultrasound Med. Biol.
    , vol. 30, no. 7, pp. 973-977, Jul 2004.
    [153] D. L. Miller and J. Quddus, "Diagnostic ultrasound-induced membrane damage in phagocytic cells loaded with contrast agent and its relation to Doppler-mode images," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, no. 8, pp. 1094-1102, Aug 2002.
    [154] S. T. Kang and C. K. Yeh, "A maleimide-based in-vitro model for ultrasound targeted imaging," Ultrason. Sonochem., vol. 18, no. 1, pp. 327-333, Jan 2011.
    [155] C. S. Chiang, F. H. Chen, J. H. Hong, P. S. Jiang, H. L. Huang, C. C. Wang, and W. H. McBride, "Functional phenotype of macrophages depends on assay procedures," Int. Immunol., vol. 20, no. 2, pp. 215-222, Feb 2008.
    [156] K. A. Shirey, L. E. Cole, A. D. Keegan, and S. N. Vogel, "Francisella tularensis live vaccine strain induces macrophage alternative activation as a survival mechanism," J. Immunol., vol. 181, no. 6, pp. 4159-4167, Sep 15 2008.
    [157] K. I. Hulkower and R. L. Herber, "Cell migration and invasion assays as tools for drug discovery," Pharmaceutics, vol. 3, no. 4, pp. 107-124, 2011.
    [158] P. G. Barlow, A. Clouter-Baker, K. Donaldson, J. Maccallum, and V. Stone, "Carbon black nanoparticles induce type II epithelial cells to release chemotaxins for alveolar macrophages," Part. Fibre Toxicol., vol. 2, p. 11, 2005.
    [159] Y. Gong, E. Hart, A. Shchurin, and J. Hoover-Plow, "Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice," J. Clin. Invest., vol. 118, no. 9, pp. 3012-3024, Sep 2008.
    [160] P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. H. Brandenburger, and K. W. Ferrara, "Optical and acoustical observations of the effects of ultrasound on contrast agents," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 46, no. 1, pp. 220-232, 1999.
    [161] F. Krombach, S. Munzing, A. M. Allmeling, J. T. Gerlach, J. Behr, and M. Dorger, "Cell size of alveolar macrophages: an interspecies comparison," Environ. Health Perspect., vol. 105 Suppl 5, pp. 1261-1263, Sep 1997.
    [162] C. S. Buer, K. T. Gahagan, G. A. Swartzlander, and P. J. Weathers, "Insertion of microscopic objects through plant cell walls using laser microsurgery," Biotechnol. Bioeng., vol. 60, no. 3, pp. 348-355, Nov 5 1998.
    [163] Y. Liu, G. J. Sonek, M. W. Berns, and B. J. Tromberg, "Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry," Biophys. J., vol. 71, no. 4, pp. 2158-2167, Oct 1996.
    [164] K. C. Neuman and A. Nagy, "Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy," Nat. Methods, vol. 5, no. 6, pp. 491-505, Jun 2008.
    [165] K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, "Characterization of photodamage to Escherichia coli in optical traps," Biophys. J., vol. 77, no. 5, pp. 2856-2863, Nov 1999.
    [166] J. Shi, H. Huang, Z. Stratton, Y. Huang, and T. J. Huang, "Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW)," Lab on a chip, vol. 9, no. 23, pp. 3354-3359, Dec 7 2009.
    [167] P. L. Marston, "Negative axial radiation forces on solid spheres and shells in a Bessel beam," J. Acoust. Soc. Am., vol. 122, no. 6, pp. 3162-3165, Dec 2007.
    [168] F. G. Mitri, "Negative axial radiation force on a fluid and elastic spheres illuminated by a high-order Bessel beam of progressive waves," J. Phys. a-Math. Theor., vol. 42, no. 24, p. 245202, Jun 19 2009.
    [169] J. Lee, K. Ha, and K. K. Shung, "A theoretical study of the feasibility of acoustical tweezers: ray acoustics approach," J. Acoust. Soc. Am., vol. 117, no. 5, pp. 3273-3280, May 2005.
    [170] J. Lee and K. K. Shung, "Radiation forces exerted on arbitrarily located sphere by acoustic tweezer," J. Acoust. Soc. Am., vol. 120, no. 2, pp. 1084-1094, Aug 2006.
    [171] J. Lee and K. K. Shung, "Effect of ultrasonic attenuation on the feasibility of acoustic tweezers," Ultrasound in medicine & biology, vol. 32, no. 10, pp. 1575-1583, Oct 2006.
    [172] J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, "Single beam acoustic trapping," Appl. Phys. Lett., vol. 95, no. 7, p. 73701, Aug 17 2009.
    [173] J. Lee, S. Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, "Transverse Acoustic Trapping Using a Gaussian Focused Ultrasound," Ultrasound in medicine & biology, vol. 36, no. 2, pp. 350-355, Feb 2010.
    [174] J. Lee, C. Lee, and K. K. Shung, "Calibration of sound forces in acoustic traps," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 57, no. 10, pp. 2305-2310, Oct 2010.
    [175] J. S. Jeong, J. W. Lee, C. Y. Lee, S. Y. Teh, A. Lee, and K. K. Shung, "Particle manipulation in a microfluidic channel using acoustic trap," Biomed. Microdevices, vol. 13, no. 4, pp. 779-788, Aug 2011.
    [176] J. Lee, J. S. Jeong, and K. K. Shung, "Microfluidic acoustic trapping force and stiffness measurement using viscous drag effect," Ultrasonics, vol. 53, no. 1, pp. 249-254, Jan 2013.
    [177] J. Lee, J. H. Chang, J. S. Jeong, C. Lee, S. Y. Teh, A. Lee, and K. K. Shung, "Backscattering measurement from a single microdroplet," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 4, pp. 874-879, Apr 2011.
    [178] C. Lee, J. Lee, H. H. Kim, S. Y. Teh, A. Lee, I. Y. Chung, J. Y. Park, and K. K. Shung, "Microfluidic droplet sorting with a high frequency ultrasound beam," Lab on a chip, vol. 12, no. 15, pp. 2736-2742, Aug 7 2012.
    [179] J. Lee, C. Lee, H. H. Kim, A. Jakob, R. Lemor, S. Y. Teh, A. Lee, and K. K. Shung, "Targeted cell immobilization by ultrasound microbeam," Biotechnol. Bioeng., vol. 108, no. 7, pp. 1643-1650, Jul 2011.
    [180] M. J. Crocker, Encyclopedia of Acoustics, 1 ed. New York: NY: Wiley, 1997.
    [181] K. B. Im, S. B. Ju, S. Han, H. Park, B. M. Kim, D. Jin, and S. K. Kim, "Trapping efficiency of a femtosecond laser and damage thresholds for biological cells," J. Korean Phys. Soc., vol. 48, no. 5, pp. 968-973, May 2006.
    [182] F. L. Mao, Q. R. Xing, K. Wang, L. Y. Lang, Z. Wang, L. Chai, and Q. Y. Wang, "Optical trapping of red blood cells and two-photon excitation-based photodynamic study using a femtosecond laser," Opt. Commun., vol. 256, no. 4-6, pp. 358-363, Dec 15 2005.
    [183] Q. R. Xing, F. L. Mao, C. Lu, and Q. Y. Wang, "Numerical modeling and theoretical analysis of femtosecond laser tweezers," Opt. Laser Technol., vol. 36, no. 8, pp. 635-639, Nov 2004.
    [184] F. J. Fahy, Sound Intensity, 2 ed. London: LDN: E & FN Spon, 1995.
    [185] L. D. L. Landau, E. M. , Fluid Mechanics, 2 ed. New York: NY: Pergamon Press, 1987.
    [186] J. Lekner, "Energy and momentum of sound pulses," Physica A, vol. 363, no. 2, pp. 217-225, May 1 2006.
    [187] J. A. Jensen and N. B. Svendsen, "Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 39, no. 2, pp. 262-267, 1992.
    [188] J. F. Nye and M. V. Berry, "Dislocations in wave trains," Proc. R. Soc. Lond. A, vol. 336, no. 1605, pp. 165-190, 1974.
    [189] A. O. Santillan and K. Volke-Sepulveda, "A demonstration of rotating sound waves in free space and the transfer of their angular momentum to matter," Am. J. Phys., vol. 77, no. 3, pp. 209-215, Mar 2009.
    [190] B. T. Hefner and P. L. Marston, "An acoustical helicoidal wave transducer with applications for the alignment of ultrasonic and underwater systems," J. Acoust. Soc. Am., vol. 106, no. 6, pp. 3313-3316, Dec 1999.
    [191] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular-momentum of light and the transformation of laguerre-gaussian laser modes," Phys. Rev. A, vol. 45, no. 11, pp. 8185-8189, Jun 1 1992.
    [192] S. Gspan, A. Meyer, S. Bernet, and M. Ritsch-Marte, "Optoacoustic generation of a helicoidal ultrasonic beam," J. Acoust. Soc. Am., vol. 115, no. 3, pp. 1142-1146, Mar 2004.
    [193] R. Marchiano and J. L. Thomas, "Synthesis and analysis of linear and nonlinear acoustical vortices," Phys. Rev. E, vol. 71, no. 6 Pt 2, p. 066616, Jun 2005.
    [194] J. L. Thomas and R. Marchiano, "Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices," Phys. Rev. Lett., vol. 91, no. 24, p. 244302, Dec 12 2003.
    [195] L. V. King, "On the acoustic radiation pressure on spheres," Proc. R. Soc. Lond. A, vol. 147, no. 861, pp. 212-240, 1934.
    [196] K. K. Yosioka, Y., "Acoustic radiation pressure on a compressible sphere," Acustica, vol. 5, pp. 169-173, 1955.
    [197] L. P. Gor’kov, "Of forces acting on a small particle in acoustical field in an ideal fluid," Sov. Phys. Dokl., vol. 6, no. 9, pp. 773–775, 1962.
    [198] W. L. Nyborg, "Radiation pressure on a small rigid sphere," J. Acoust. Soc. Am., vol. 42, no. 5, pp. 947-952, 1967.
    [199] D. T. Blackstock, Fundamentals of Physical Acoustics. New York: NY: Wiley, 2000.
    [200] A. Shaw and M. Hodnett, "Calibration and measurement issues for therapeutic ultrasound," Ultrasonics, vol. 48, no. 4, pp. 234-252, Aug 2008.
    [201] D. Ganic, X. Gan, and M. Gu, "Exact radiation trapping force calculation based on vectorial diffraction theory," Opt. Express, vol. 12, no. 12, pp. 2670-2675, Jun 14 2004.
    [202] J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, "Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers," Opt. Express, vol. 18, no. 7, pp. 7554-7568, Mar 29 2010.
    [203] A. K. De, D. Roy, A. Dutta, and D. Goswami, "Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination," Appl. Opt., vol. 48, no. 31, pp. G33-37, Nov 1 2009.
    [204] S. Maeda, T. Sugiura, and K. Minato, "Optical Tweezers with Assistance of Sub-Microsecond-Duration Pulse Laser Beam," Appl. Phys. Express, vol. 5, no. 4, p. 042701, Apr 2012.
    [205] R. C. Chivers and L. W. Anson, "Calculations of the Backscattering and Radiation Force Functions of Spherical Targets for Use in Ultrasonic Beam Assessment," Ultrasonics, vol. 20, no. 1, pp. 25-34, 1982.
    [206] A. B. Stilgoe, T. A. Nieminen, G. Knoener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "The effect of Mie resonances on trapping in optical tweezers," Opt. Express, vol. 16, no. 19, pp. 15039-15051, Sep 15 2008.
    [207] B. Sun and D. G. Grier, "The effect of Mie resonances on trapping in optical tweezers: comment," Opt. Express, vol. 17, no. 4, pp. 2658-2662, Feb 16 2009.
    [208] R. E. Baddour and M. C. Kolios, "The fluid and elastic nature of nucleated cells: implications from the cellular backscatter response," J. Acoust. Soc. Am., vol. 121, no. 1, pp. EL16-22, Jan 2007.
    [209] D. A. Knspik, B. Starkoski, C. J. Pavlin, and F. S. Foster, "A 100-200 MHz ultrasound biomicroscope," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, no. 6, pp. 1540-1549, 2000.
    [210] W. D. O'Brien, Jr., J. W. Erdman, Jr., and T. B. Hebner, "Ultrasonic propagation properties (@ 100 MHz) in excessively fatty rat liver," J. Acoust. Soc. Am., vol. 83, no. 3, pp. 1159-1166, Mar 1988.
    [211] V. P. Zharov, T. V. Malinsky, and R. C. Kurten, "Photoacoustic tweezers with a pulsed laser: theory and experiments," J. Phys. D: Appl. Phys., vol. 38, no. 15, pp. 2662-2674, Aug 7 2005.
    [212] L. P. Ghislain, N. A. Switz, and W. W. Webb, "Measurement of Small Forces Using an Optical Trap," Rev. Sci. Instrum., vol. 65, no. 9, pp. 2762-2768, Sep 1994.
    [213] T. Laurell, F. Petersson, and A. Nilsson, "Chip integrated strategies for acoustic separation and manipulation of cells and particles," Chem. Soc. Rev., vol. 36, no. 3, pp. 492-506, Mar 2007.
    [214] M. Saito, N. Kitamura, and M. Terauchi, "Ultrasonic manipulation of locomotive microorganisms and evaluation of their activity," J. Appl. Phys., vol. 92, no. 12, pp. 7581-7586, Dec 15 2002.
    [215] L. A. Kuznetsova and W. T. Coakley, "Microparticle concentration in short path length uftrasonic resonators: Roles of radiation pressure and acoustic streaming," J. Acoust. Soc. Am., vol. 116, no. 4, pp. 1956-1966, Oct 2004.
    [216] S. D. Danilov and M. A. Mironov, "Mean force on a small sphere in a sound field in a viscous fluid," J. Acoust. Soc. Am., vol. 107, no. 1, pp. 143-153, Jan 2000.
    [217] D. Kagan, M. J. Benchimol, J. C. Claussen, E. Chuluun-Erdene, S. Esener, and J. Wang, "Acoustic droplet vaporization and propulsion of perfluorocarbon-loaded microbullets for targeted tissue penetration and deformation," Angew. Chem. Int. Ed. Engl., vol. 51, no. 30, pp. 7519-7522, Jul 23 2012.
    [218] T. Y. Wang, Z. Xu, T. L. Hall, J. B. Fowlkes, W. W. Roberts, and C. A. Cain, "Active Focal Zone Sharpening for High-Precision Treatment Using Histotripsy," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 2, pp. 305-315, Feb 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE