研究生: |
劉雅玲 |
---|---|
論文名稱: |
探討長壽果蠅EP1130的標的基因及其調控機轉 The investigation of the target gene and the possible regulatory mechanisms in Drosophila longevity EP1130 |
指導教授: | 汪宏達 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | longevity 、aging 、alpha-mannosidase-I 、lifespan 、stress resistance 、fly |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
EP1130 為一株經過多重壓力測試所篩選出來具有抗壓性且為長壽的突變株果蠅。而其P-element的插入造成了CG32684( alpha-mannosidase-I ) 表現量降低。其他突變株果蠅: EP1628 和EP982,他們的P-element也是插在CG32684,同樣地,也使得此基因表現量降低且同時他們有長壽的特性及對壓力有抗性。另外一株從多重壓力測試篩選出具有抗壓性的突變株果蠅EP1588其P-element的插入造成CG32684 paralogue基因CG3810表現量減少且也是長壽果蠅。而且我們發現,這些突變株果蠅當為heterozygous基因型態時就足以使得壽命延長。然而,當EP1130,1628 和982在transheterozygous基因型態時並不能使得已延長的壽命再增加。處理alpha-mannosidase-I 活性抑制劑1-deoxymannojirimycin或kifunensine 發現也對果蠅的壽命有正面的效果。藉由分子生物技術及遺傳方法研究探討可能相關的訊息路徑及機制,例如:insulin/IGF-1, JNK pathway, ER stress,然而,目前發現在利用遺傳方法的結果指出EP1130 的長壽可能和ecdysone 路徑有關。總之,我們的研究證實alpha-mannosidase-I的確參與調節果蠅的壽命。
The long-lived mutant strain EP1130 was screened from a multiple-stresses test. The P-element inserted in EP1130 down-regulating the expression of alpha-mannosidase-I (CG32684). Independent EP insertion alleles in the CG32684, EP1628 and 982 with reduced expression of alpha-mannosidase-I also showed increase of lifespan and stress resistances. EP1588 is another EP line screened from the multiple-stresses test associated with CG3810, which is a CG32684 paralogue, showed decreased expression and also displayed extended lifespan. We also found heterozygous mutants in these four mutant lines were sufficient for long-lived phenotype. Transheterozygotes among EP1130, 1628, and 982 do not show further enhancement of lifespan compared to homozygous strains. The treatments of alpha-mannosidase-I inhibitors, 1-deoxynojirimycin or kifunensine also showed beneficial effects on lifespan elongation in Drosophila melanogaster. Using molecular and genetic approaches, we found that longevity in EP1130 was independent from insulin/IGF-1, JNK pathway and ER stress. However, the genetics data suggested that it might be involved with ecdysone pathway. In conclusion, this study demonstrated that alpha-mannosidase-I plays a role in regulating lifespan in Drosophila melanogaster.
[1] H.Y. Lim, R. Bodmer, and L. Perrin, Drosophila aging 2005/06. Exp Gerontol 41 (2006) 1213-6.
[2] D.B. Lombard, K.F. Chua, R. Mostoslavsky, S. Franco, M. Gostissa, and F.W. Alt, DNA repair, genome stability, and aging. Cell 120 (2005) 497-512.
[3] Y. Zhang, and B. Herman, Ageing and apoptosis. Mech Ageing Dev 123 (2002) 245-60.
[4] D.A. Sinclair, Toward a unified theory of caloric restriction and longevity regulation. Mech Ageing Dev 126 (2005) 987-1002.
[5] M.E. Giannakou, and L. Partridge, Role of insulin-like signalling in Drosophila lifespan. Trends Biochem Sci 32 (2007) 180-8.
[6] M.C. Wang, D. Bohmann, and H. Jasper, JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 121 (2005) 115-25.
[7] P. Kapahi, B.M. Zid, T. Harper, D. Koslover, V. Sapin, and S. Benzer, Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14 (2004) 885-90.
[8] Y.J. Lin, L. Seroude, and S. Benzer, Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282 (1998) 943-6.
[9] H.D. Wang, P. Kazemi-Esfarjani, and S. Benzer, Multiple-stress analysis for isolation of Drosophila longevity genes. Proc Natl Acad Sci U S A 101 (2004) 12610-5.
[10] C.B. Phelps, and A.H. Brand, Ectopic Gene Expression inDrosophilaUsing GAL4 System. Methods 14 (1998) 367-379.
[11] B.D. Joseph, GAL4 system in drosophila: A fly geneticist's swiss army knife. Genesis 34 (2002) 1-15.
[12] J.W. Gargano, I. Martin, P. Bhandari, and M.S. Grotewiel, Rapid iterative negative geotaxis (RING): a new method for assessing age-related locomotor decline in Drosophila. Exp Gerontol 40 (2005) 386-95.
[13] S. Sisodia, and B.N. Singh, Effect of temperature on longevity and productivity in Drosophila ananassae: evidence for adaptive plasticity and trade-off between longevity and productivity. Genetica 114 (2002) 95-102.
[14] R. Arking, S. Buck, R.A. Wells, and R. Pretzlaff, Metabolic rates in genetically based long lived strains of Drosophila. Exp Gerontol 23 (1988) 59-76.
[15] N.W. Shock, The role of nutrition in aging. J Am Coll Nutr 1 (1982) 3-9.
[16] J.G. Wood, B. Rogina, S. Lavu, K. Howitz, S.L. Helfand, M. Tatar, and D. Sinclair, Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430 (2004) 686-9.
[17] C.J. Vermeulen, and R. Bijlsma, Changes in mortality patterns and temperature dependence of lifespan in Drosophila melanogaster caused by inbreeding. Heredity 92 (2004) 275-81.
[18] A. Herscovics, Importance of glycosidases in mammalian glycoprotein biosynthesis. Biochim Biophys Acta 1473 (1999) 96-107.
[19] P.F. Daniel, B. Winchester, and C.D. Warren, Mammalian alpha-mannosidases--multiple forms but a common purpose? Glycobiology 4 (1994) 551-66.
[20] A. Herscovics, Structure and function of Class I [alpha]1,2-mannosidases involved in glycoprotein synthesis and endoplasmic reticulum quality control. Biochimie 83 (2001) 757-762.
[21] T. Beccari, S. Stinchi, and A. Orlacchio, Lysosomal alpha-D-mannosidase. Biosci Rep 19 (1999) 157-62.
[22] S. Kerscher, S. Albert, D. Wucherpfennig, M. Heisenberg, and S. Schneuwly, Molecular and Genetic Analysis of the Drosophila mas-1 (mannosidase-1) Gene Which Encodes a Glycoprotein Processing [alpha]1,2-Mannosidase. Developmental Biology 168 (1995) 613-626.
[23] L.O. Tremblay, E. Nagy Kovacs, E. Daniels, N.K. Wong, M. Sutton-Smith, H.R. Morris, A. Dell, E. Marcinkiewicz, N.G. Seidah, C. McKerlie, and A. Herscovics, Respiratory distress and neonatal lethality in mice lacking Golgi alpha1,2-mannosidase IB involved in N-glycan maturation. J Biol Chem 282 (2007) 2558-66.
[24] S. Zou, S. Meadows, L. Sharp, L.Y. Jan, and Y.N. Jan, Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci U S A 97 (2000) 13726-31.
[25] M. Zhu, K.L. Lovell, J.S. Patterson, T.L. Saunders, E.D. Hughes, and K.H. Friderici, Beta-mannosidosis mice: a model for the human lysosomal storage disease. Hum Mol Genet 15 (2006) 493-500.
[26] K.A. Cingle, R.S. Kalski, W.E. Bruner, C.M. O'Brien, P. Erhard, and R.E. Wyszynski, Age-related changes of glycosidases in human retinal pigment epithelium. Curr Eye Res 15 (1996) 433-8.
[27] N. Shah, D.A. Kuntz, and D.R. Rose, Comparison of kifunensine and 1-deoxymannojirimycin binding to class I and II alpha-mannosidases demonstrates different saccharide distortions in inverting and retaining catalytic mechanisms. Biochemistry 42 (2003) 13812-6.
[28] Y. Lu, Y.Y. Xu, K.Y. Fan, and Z.H. Shen, 1-Deoxymannojirimycin, the alpha1,2-mannosidase inhibitor, induced cellular endoplasmic reticulum stress in human hepatocarcinoma cell 7721. Biochem Biophys Res Commun 344 (2006) 221-5.
[29] R.F. Arakaki, J.A. Hedo, E. Collier, and P. Gorden, Effects of castanospermine and 1-deoxynojirimycin on insulin receptor biogenesis. Evidence for a role of glucose removal from core oligosaccharides. J Biol Chem 262 (1987) 11886-92.
[30] A.F. Simon, C. Shih, A. Mack, and S. Benzer, Steroid control of longevity in Drosophila melanogaster. Science 299 (2003) 1407-10.
[31] B. Lawson, J.W. Brewer, and L.M. Hendershot, Geldanamycin, an hsp90/GRP94-binding drug, induces increased transcription of endoplasmic reticulum (ER) chaperones via the ER stress pathway. J Cell Physiol 174 (1998) 170-8.
[32] A.D. Elbein, Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. Faseb J 5 (1991) 3055-63.
[33] M. Viswanathan, S.K. Kim, A. Berdichevsky, and L. Guarente, A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9 (2005) 605-15.
[34] J.C. Greene, A.J. Whitworth, L.A. Andrews, T.J. Parker, and L.J. Pallanck, Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum Mol Genet 14 (2005) 799-811.
[35] J.B. Tillman, P.L. Mote, R.L. Walford, and S.R. Spindler, Structure and regulation of the mouse GRP78 (BiP) promoter by glucose and calcium ionophore. Gene 158 (1995) 225-9.
[36] S.R. Spindler, M.D. Crew, P.L. Mote, J.M. Grizzle, and R.L. Walford, Dietary energy restriction in mice reduces hepatic expression of glucose-regulated protein 78 (BiP) and 94 mRNA. J Nutr 120 (1990) 1412-7.
[37] L. Partridge, S.D. Pletcher, and W. Mair, Dietary restriction, mortality trajectories, risk and damage. Mech Ageing Dev 126 (2005) 35-41.
[38] R. Weindruch, T. Kayo, C.K. Lee, and T.A. Prolla, Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 131 (2001) 918S-923S.
[39] D.B. Roberts, W.J. Mulvany, R.A. Dwek, and P.M. Rudd, Mutant analysis reveals an alternative pathway for N-linked glycosylation in Drosophila melanogaster, Eur J Biochem, 1998, pp. 494-8.