研究生: |
吳盈瑩 Wu, Yingying |
---|---|
論文名稱: |
軟質化學感測器之製程開發及其應用 Development and Applications of Flexible Plasmonic Chemical Sensors |
指導教授: |
萬德輝
Wan, Dehui |
口試委員: |
曾紹欽
Tseng, Shao-Chin 賴宇紳 Lai, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 氣體感測 、表面電漿共振 、金屬奈米粒子陣列 、生物胺 、食品安全 |
外文關鍵詞: | gas sensor, surface plasmon resonance, metal nanoparticle array, biogenic amines, food safety |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為兩個部分,第一部分的研究為利用濕式化學法將金屬奈米粒子陣列自組裝於PET基板上,將其應用於環境中重金屬汞汙染之快速檢測。當銀奈米粒子與汞離子接觸後會產生自發性氧化還原反應,產生汞合金 (銀汞齊)。而PET感測器上的銀含量逐漸損耗,伴隨著表面電漿共振的特性會迅速衰減,同時顏色會產生變化。因此,本研究可藉由光譜以及色彩RGB分析來初步判斷所檢驗的樣品內之汞離子濃度高低。首先,我們進行了奈米粒子陣列密度、反應時間、表面修飾、奈米結構選擇等參數之最佳化,接著,以最佳化後的PET感測器進行分析並獲得兩種類型檢量線─光譜分析以及色彩RGB分析,並進行PET感測器之選擇性探討。最後,我們將此感測器應用於真實樣品之研究。在第二部分中,我們選用鐵氟龍作為基材,利用真空濺鍍以及賈凡尼置換反應快速製備銀金合金奈米圓頂感測器,針對銀金合金奈米圓頂進行光譜以及表面形態之分析,接著發現生物胺氣體會吸附於銀金合金奈米圓頂上,藉由環境折射率改變光譜發生位移變化,肉眼可見顏色也發生改變。因此進行鍍膜厚度、四氯金酸濃度選擇等不同參數的光譜分析以及色彩分析之最佳化,藉由吸附生物胺氣體,已初步確認可應用在食品新鮮度之檢測。
In the first part of thesis, we used the paper-base plasmonic sensor to detect mercuric ions. The mechanism is based on the principle that silver nanoparticles could spontaneously react with mercuric ions and consequently form amalgam. The reduction of silver element during the reaction might result in an obvious color change, which could be utilized to determine the concentration of the mercuric ions by naked-eye. Herein, we optimized the plasmonic sensors to further enhance their sensibility through modifying their particle number density, surface coating layers and morphology. The plasmonic sensors were used to analyze the real samples from mercury-polluted water sources.
In the second part of thesis, we fabricated low-cost, flexible, and disposable biosensors for the detection of volatile BAs by using a combination process of physical vapor deposition (PVD) and galvanic replacement reaction (GRR) to form monolayer hollow gold nanoparticles (HGNs) arrays on polytetrafluoroethylene (PTFE) substrates. First, the Ag islands on a PTFE substrate were prepared by sputtering, and the silver islands were then transformed into silver nanocaps (AgNCs) by thermally annealing at 210 ℃ for 20 min. Then, the AgNCs were brought to react with HAuCl4 at various concentrations. We optimized the thickness of silver island and the concentration of HAuCl4. Finally, we demonstrate that the food freshness could be in situ monitored by naked eyes by using our PTFE-based sensors.
[1] Li ZB, Meng GW, Huang Q, Hu XY, He X, Tang HB, et al. Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates. Small. 2015;11:5452-9.
[2] Kang M, Ahn MS, Lee Y, Jeong KH. Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films. ACS Appl Mater Interfaces. 2017;9:37154-9.
[3] Choi T, Kim SH, Lee CW, Kim H, Choi SK, Kim SH, et al. Synthesis of carbon nanotube-nickel nanocomposites using atomic layer deposition for high-performance non-enzymatic glucose sensing. Biosens Bioelectron. 2015;63:325-30.
[4] Fischer J, von Freymann G, Wegener M. The Materials Challenge in Diffraction-Unlimited Direct-Laser-Writing Optical Lithography. Adv Mater. 2010;22:3578-+.
[5] Maurer JHM, Gonzalez-Garcia L, Reiser B, Kanelidis I, Kraus T. Templated Self-Assembly of Ultrathin Gold Nanowires by Nanoimprinting for Transparent Flexible Electronics. Nano Lett. 2016;16:2921-5.
[6] http://en.wikipedia.org/wiki/Sputter_deposition.
[7]https://www.researchgate.net/figure/Schematic-of-thermal-evaporation-process_fig12_319852473.
[8] Araujo A, Mendes MJ, Mateus T, Vicente A, Nunes D, Calmeiro T, et al. Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealing. J Phys Chem C. 2016;120:18235-42.
[9] Naik VV, Crobu M, Venkataraman NV, Spencer ND. Multiple Transmission-Reflection IR Spectroscopy Shows that Surface Hydroxyls Play Only a Minor Role in Alkylsilane Monolayer Formation on Silica. J Phys Chem Lett. 2013;4:2745-51.
[10] Sarkar A, Daniels-Race T. Electrophoretic Deposition of Carbon Nanotubes on 3-Amino-Propyl-Triethoxysilane (APTES) Surface Functionalized Silicon Substrates. Nanomaterials-Basel. 2013;3:272-88.
[11] Sun YG, Mayers BT, Xia YN. Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett. 2002;2:481-5.
[12] Gilroy KD, Sundar A, Farzinpour P, Hughes RA, Neretina S. Mechanistic study of substrate-based galvanic replacement reactions. Nano Res. 2014;7:365-79.
[13] Choi CJ, Xu ZD, Wu HY, Liu GL, Cunningham BT. Surface-enhanced Raman nanodomes. Nanotechnology. 2010;21:7.
[14] Rana M, Balcioglu M, Robertson NM, Hizir MS, Yumak S, Yigit MV. Low picomolar, instrument-free visual detection of mercury and silver ions using low-cost programmable nanoprobes. Chemical Science. 2017;8:1200-8.
[15] https://wq.epa.gov.tw/Code/Business/Statutory.aspx?Tabs=1
[16] Absalan Y, Bratchikova IG, Lobanov NN, Kovalchukova OV. Novel synthesis method for photo-catalytic system based on some 3d-metal titanates. Journal of Materials Science-Materials in Electronics. 2017;28:18207-19.
[17] Moradi Z, Akhbari K, Phuruangrat A, Costantino F. Passage of the Roughening Temperature Influence on the Crystalline Structure and Morphology of a Nano Metal-Organic Material. Journal of Inorganic and Organometallic Polymers and Materials. 2017;27:1712-8.
[18] Lee CC, Omar FS, Numan A, Duraisamy N, Ramesh K, Ramesh S. An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. Journal of Solid State Electrochemistry. 2017;21:3205-13.
[19] Lee JS, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie-International Edition. 2007;46:4093-6.
[20] Du JJ, Zhu BW, Chen XD. Urine for Plasmonic Nanoparticle-Based Colorimetric Detection of Mercury Ion. Small. 2013;9:4104-11.
[21] Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF. Detection of Mercury(II) Ions Using Colorimetric Gold Nanoparticles on Paper-Based Analytical Devices. Analytical Chemistry. 2014;86:6843-9.
[22] Halasz A, Barath A, Simonsarkadi L, Holzapfel W. Biogenic-Amines and Their Production by Microorganisms in Food. Trends Food Sci Tech. 1994;5:42-9.
[23] Rak L. Biogenic amines in dairy products. Med Weter. 2005;61:391-3.
[24] Lazaro CA, Conte CA, Canto AC, Monteiro MLG, Costa-Lima B, da Cruz AG, et al. Biogenic amines as bacterial quality indicators in different poultry meat species. LWT-Food Sci Technol. 2015;60:15-21.
[25] Biji KB, Ravishankar CN, Venkateswarlu R, Mohan CO, Gopal TKS. Biogenic amines in seafood: a review. J Food Sci Technol-Mysore. 2016;53:2210-8.
[26] Jastrzebska A, Piasta A, Szlyk E. Application of Ion Chromatography for the Determination of Biogenic Amines in Food Samples. J Anal Chem. 2015;70:1131-8.
[27] Mayr CM, Schieberle P. Development of Stable Isotope Dilution Assays for the Simultaneous Quantitation of Biogenic Amines and Polyamines in Foods by LC-MS/MS. J Agric Food Chem. 2012;60:3026-32.
[28] Teodorovic V, Buncic S, Smiljanic D. A STUDY OF FACTORS INFLUENCING HISTAMINE PRODUCTION IN MEAT. Fleischwirtschaft. 1994;74:170-2.
[29] Palermo C, Muscarella M, Nardiello D, Iammarino M, Centonze D. A multiresidual method based on ion-exchange chromatography with conductivity detection for the determination of biogenic amines in food and beverages. Anal Bioanal Chem. 2013;405:1015-23.
[30] Parchami R, Kamalabadi M, Alizadeh N. Determination of biogenic amines in canned fish samples using head-space solid phase microextraction based on nanostructured polypyrrole fiber coupled to modified ionization region ion mobility spectrometry. J Chromatogr A. 2017;1481:37-43.
[31] Fu YQ, Zhou ZH, Li YL, Lu X, Zhao CX, Xu GW. High-sensitivity detection of biogenic amines with multiple reaction monitoring in fish based on benzoyl chloride derivatization. J Chromatogr A. 2016;1465:30-7.
[32] Bilgin B, Genccelep H. Determination of biogenic amines in fish products. Food Sci Biotechnol. 2015;24:1907-13.
[33] Kaufmann A, Maden K. Easy and Fast Method for the Determination of Biogenic Amines in Fish and Fish Products with Liquid Chromatography Coupled to Orbitrap Tandem Mass Spectrometry. J AOAC Int. 2018;101:336-41.
[34] Krizek M, Dadakova E, Vacha F, Pelikanova T. Comparison of the formation of biogenic amines in irradiated and smoked fish. Eur Food Res Technol. 2017;243:1989-95.
[35] Shalaby AR. Significance of biogenic amines to food safety and human health. Food Res Int. 1996;29:675-90.
[36] Sun JS, Guo HX, Semin D, Cheetham J. Direct separation and detection of biogenic amines by ion-pair liquid chromatography with chemiluminescent nitrogen detector. J Chromatogr A. 2011;1218:4689-97.
[37] Papageorgiou M, Lambropoulou D, Morrison C, Modzinska E, Namiesnik J, Plotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trac-Trends Anal Chem. 2018;98:128-42.
[38] Wang KH, Penmatsa A, Gouaux E. Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature. 2015;521:322-+.
[39] Gardini F, Ozogul Y, Suzzi G, Tabanelli G, Ozogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front Microbiol. 2016;7:18.
[40] Linares DM, del Rio B, Ladero V, Martinez N, Fernandez M, Martin MC, et al. Factors influencing biogenic amines accumulation in dairy products. Front Microbiol. 2012;3:10.
[41] Bover-Cid S, Izquierdo-Pulido M, Vidal-Carou MC. Influence of hygienic quality of raw materials on biogenic amine production during ripening and storage of dry fermented sausages. J Food Protect. 2000;63:1544-50.
[42] Sumner SS, Speckhard MW, Somers EB, Taylor SL. Isolation of Histamine-Producing Lactobacillus-Buchneri from Swiss Cheese Implicated in a Food Poisoning Outbreak. Appl Environ Microb. 1985;50:1094-6.
[43] Mietz JL, Karmas E. Chemical Quality Index of Canned Tuna as Determined by High-Pressure Liquid-Chromatography. J Food Sci. 1977;42:155-8.
[44] Karovicova J, Kohajdova Z. Biogenic amines in food. Chem Pap. 2005;59:70-9.
[45] HernandezJover T, IzquierdoPulido M, VecianaNogues MT, VidalCarou MC. Biogenic amine sources in cooked cured shoulder pork. J Agric Food Chem. 1996;44:3097-101.
[46] Lehane L, Olley J. Histamine fish poisoning revisited. Int J Food Microbiol. 2000;58:1-37.
[47] Ozogul F, Gokbulut C, Ozogul Y, Ozyurt G. Biogenic amine production and nucleotide ratios in gutted wild sea bass (Dicentrarchus labrax) stored in ice, wrapped in aluminium foil and wrapped in cling film at 4 degrees C. Food Chem. 2006;98:76-84.
[48] Landete JM, Ferrer S, Pardo I. Improved enzymatic method for the rapid determination of histamine in wine. Food Addit Contam. 2004;21:1149-54.
[49] Maijala RL. Formation of Histamine and Tyramine by Some Lactic-Acid Bacteria in Mrs-Broth and Modified Decarboxylation Agar. Lett Appl Microbiol. 1993;17:40-3.
[50] Straub BW, Kicherer M, Schilcher SM, Hammes WP. The Formation of Biogenic-Amines by Fermentation Organisms. Z Lebensm Unters For. 1995;201:79-82.
[51] Bover-Cid S, Holzapfel WH. Improved screening procedure for biogenic amine production by lactic acid bacteria. Int J Food Microbiol. 1999;53:33-41.
[52] Lazaro C, Conte CA, Cunha FL, Marsico ET, Mano SB, Franco RM. Validation of an HPLC Methodology for the Identification and Quantification of Biogenic Amines in Chicken Meat. Food Anal Method. 2013;6:1024-32.
[53] Luten JB, Bouquet W, Seuren LAJ, Burggraaf MM, Riekwelbooy G, Durand P, et al. Biogenic-Amines in Fishery Products - Standardization Methods within Ec. Dev Food Sci. 1992;30:427-39.
[54] Barancin CE, Smoot JC, Findlay RH, Actis LA. Plasmid-mediated histamine biosynthesis in the bacterial fish pathogen Vibrio anguillarum. Plasmid. 1998;39:235-44.
[55] Garcia-Moruno E, Carrascosa AV, Munoz R. A rapid and inexpensive method for the determination of biogenic amines from bacterial cultures by thin-layer chromatography. J Food Protect. 2005;68:625-9.
[56] Tseng SY, Li SY, Yi SY, Sun AY, Gao DY, Wan DH. Food Quality Monitor: Paper-Based Plasmonic Sensors Prepared Through Reversal Nanoimprinting for Rapid Detection of Biogenic Amine Odorants. ACS Appl Mater Interfaces. 2017;9:17307-17.
[57] Ma ZZ, Yu HC, Wu ZY, Wu Y, Xiao FB. A Highly Sensitive Amperometric Glucose Biosensor Based on a Nano-cube Cu2O Modified Glassy Carbon Electrode. Chinese J Anal Chem. 2016;44:822-6.
[58] Wu YL, Li QW, Zhang XL, Chen X, Wang XM. Glucose biosensor based on new carbon nanotube-gold-titania nano-composites modified glassy carbon electrode. Chinese Chem Lett. 2013;24:1087-90.
[59] Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, et al. Nanostructured plasmonic sensors. Chem Rev. 2008;108:494-521.
[60] Rioux D, Meunier M. Seeded Growth Synthesis of Composition and Size-Controlled Gold-Silver Alloy Nanoparticles. J Phys Chem C. 2015;119:13160-8.
[61] Sun YG, Xia YN. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176-9.
[62] Jain PK, Huang WY, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007;7:2080-8.
[63] Caruso RA, Antonietti M. Sol-gel nanocoating: An approach to the preparation of structured materials. Chem Mater. 2001;13:3272-82.
[64] Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE. Tunability of the refractive index of gold nanoparticle dispersions. Nano Lett. 2007;7:3418-23.
[65] Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts Chem Res. 2008;41:1721-30.
[66] Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensor Actuat B-Chem. 1999;54:3-15.
[67] Jung CC, Saban SB, Yee SS, Darling RB. Chemical electrode surface plasmon resonance sensor. Sensor Actuat B-Chem. 1996;32:143-7.
[68] Chinowsky TM, Saban SB, Yee SS. Experimental data from a trace metal sensor combining surface plasmon resonance with anodic stripping voltammetry. Sensor Actuat B-Chem. 1996;35:37-43.
[69] Ashwell GJ, Roberts MPS. Highly selective surface plasmon resonance sensor for NO2. Electron Lett. 1996;32:2089-91.
[70] Miwa S, Arakawa T. Selective gas detection by means of surface plasmon resonance sensors. Thin Solid Films. 1996;281:466-8.
[71] Liedberg B, Nylander C, Lundstrom I. Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensor Actuator. 1983;4:299-304.
[72] Lee HJ, Nedelkov D, Corn RM. Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem. 2006;78:6504-10.
[73] Cheng CS, Chen YQ, Lu CJ. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta. 2007;73:358-65.
[74] Wilson BJ, Musto RJ, Ghali WA. A Case of Histamine Fish Poisoning in a Young Atopic Woman. J Gen Intern Med. 2012;27:878-81.