簡易檢索 / 詳目顯示

研究生: 林俊羽
Chun-Yu Lin
論文名稱: 使用原子力顯微鏡製造金屬奈米線與奈米電極
Fabrication of Metallic Nanowires and Nanoelectrodes Using Atomic Force Microscope
指導教授: 林鶴南
Heh-Nan Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 56
中文關鍵詞: 原子力顯微術掃描探針顯微術聚甲基丙烯酸甲酯衝擊傳輸電致遷移導電率量子化
外文關鍵詞: atomic force microscopy, scanning force microscopy, poly methylmethacrylate, ballistic transport, electromigration, conductance quantization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用原子力顯微術(atomic force microscopy, AFM),以機械力微影,在PMMA薄膜上製作奈米圖樣,然後鍍上金屬膜,再剝除(lift off)高分子膜,便完成金屬奈米線。此外以探針切割奈米線,便形成奈米電極,並分析其電傳導特性。
    在機械力微影,以探針在50 nm厚的PMMA,作出溝槽,接著先後鍍上2 nm與22 nm的金與銅,在丙酮中完成剝除程序可得到60 nm寬跟24 nm高的金屬奈米線。這些金屬奈米線的I-V曲線符合歐姆定律,但它的導電率比塊材小了26倍。我們認為這是由於材料特性而非尺寸效應引起。接著以探針切割金屬奈米線,可作出奈米缺口或極細接面,並得到間隙50 nm的奈米電極。
    對奈米電極施加0.9 V電壓可量到穿隧電流;但施加更大的電壓,例如:2 V,金屬原子會被吸引並橋接在電極間形成原子級接面。施加0.3 V以電致遷移破壞這個接面可得到原子級的缺口。當金屬線上最細的部分被切到只剩幾個原子,電導值會呈階梯狀下降。利用電致遷移處理可得到分子尺度的缺口。


    We report the fabrication of metallic nanowires and nanoelectrodes by atomic force microscopy (AFM). Nanopatterns are first created on a PMMA film by force lithography. By further metal film coating and lift off processes, metallic nanowires are constructed. In additional, nanoelectrodes can be produced by direct cutting a nanowire with the AFM tip. Electrical properties of the nanoelectrodes have also been explored.
    A 50 nm thick PMMA coated on a silicon oxide substrate is first scratch by the AFM tip to create grooves. Gold and copper films with thicknesses of 2 and 22 nm, respectively, are evaporated onto the sample subsequently. Metallic nanowires with 60 nm in width and 24 nm in height are obtained after lift off. The I-V curve of a nanowire follows Ohm’s law, but its conductance is less 26 times than bulk materials. We consider that the reduction of conductance is due to change of material properties rather than the size effect. Nanoelectrodes with a gap of around 50 nm are then created by directing a nanowire with the AFM tip.
    By applying a voltage of 0.9 V between the electrodes, the tunneling current is observed. If the voltage is lager, e.g. 2 V, the atoms of the electrodes will be attracted between two electrodes and form an atomic scale junction. This junction will break again by applying 0.3 V due to electromigration and form an atomic scale gap. When the finest point of the nanowire is reduced to a number of atoms, the conductance decreases stepwise.

    摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 第一章、簡介 1 1.1 前言 1 1.2各種微影技術 2 1.3 奈米電極的發展 3 第二章、掃描探針微影術介紹 6 2.1 原子力顯微術介紹 6 2.2製作在有機薄膜上的掃描探針微影技術 7 2.3 電流微影PMMA薄膜的顯影機制 12 2.3.1 探針的場發射原理 12 2.3.2 電子能量分解PMMA的機制 13 第三章、金屬奈米線與奈米電極的導電特性 15 3.1 Fuchs-Sondheimer理論 15 3.2 衝擊傳輸 (Ballistic transport) 17 3.3 導電率量子化 (Conductance quantization) 18 第四章、實驗步驟 19 4.1 電流微影實驗步驟 19 4.1.1 試片製備 19 4.1.2 儀器架設 20 4.1.3 顯影 21 4.2 機械力微影實驗步驟 21 4.2.1 試片製備 21 4.2.2 儀器架設 22 4.2.3 鍍膜與剝除( lift off ) 25 4.2.4量測金屬奈米線電性與切割金屬奈米線 25 第五章、結果與討論 28 5.1電流微影 28 5.1.1 PMMA加電壓後對表面形貌的影響 28 5.1.2 顯影後PMMA的線寬與電壓電流的關係 28 5.2 機械力微影 32 5.2.1 機械力微影結果 32 5.2.2 鍍膜與剝除( lift off )結果 34 5.3 金屬線電性 35 5.3.1 金屬線歐母特性 35 5.3.2 金屬線負載功率 36 5.4 製作奈米電極 37 5.4.1快速切斷金屬奈米線 37 5.4.2 多步驟切斷金屬奈米線 39 5.4.3 切斷金屬奈米線的電導值量子化 40 5.4.4 製作小於10 nm電極 43 5.4.5 電極接面的Ballistic傳輸 45 5.4.6 電致遷移製作原子級尺度電極 47 第六章、結論與建議 49 參考文獻 53

    1.C. Joachim, J. K. Gimzewski and A. Aviram, Nature 408, 541 (2000).
    2.F. Cerrina, Proc. IEEE 84, 644 (1997).
    3.L. Malmqvist, A. L. Bogdanov, L. Montelius and H. M. Hertz, J. Vac. Sci. Technol. B 15, 814 (1997).
    4.G. Simon, A. M. Haghiri-Gosnet, J. Bourneix, D. Decanini, Y. Chen, F. Rousseaux, H. Launois and B. Vidal, J. Vac. Sci. Technol. B 15, 2489 (1997).
    5.H. Watanabe, K. Marumoto, H. Sumitani, H. Yabe, K. Kise, K. Itoga and S. Aya, Jpn. J. Appl. Phys. 41, 7550 (2002).
    6.F. Robert, Science 293, 785 (2001).
    7.H. H. Solak, D. He, W. Li, S. Singh-Gasson, F. Cerrina, B. H. Sohn, X. M. Yang, and P. Nealey, Appl. Phys. Lett. 75, 2328 (1999).
    8.T. Haga, H. Kinoshita, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino and T. Watanabe, Jpn. J. Appl. Phys. 42, 3771 (2003).
    9.V. N. Golovkina, P. F. Nealey, F. Cerrina, J. W. Taylor, H. H. Solak, C. David, and J. Gobrecht, J. Vac. Sci. Technol. B 22, 99 (2004).
    10.H. Kinoshita, T. Haga, K. Hamamoto, S. Takada, N. Kazui, S. Kakunai, H. Tsubakino, T. Shoki, M. Endo and T. Watanabe, J. Vac. Sci. Technol. B 22, 264 (2004).
    11.W. Chen and H. Ahmed, Appl. Phys. Lett. 62, 29 (1993).
    12.S. Kawata, N. Katakura, S. Takahashi, and K. Uchikawa, J. Vac. Sci. Technol. B 17, 2864 (1999).
    13.C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud and H. Launois, Appl. Surf. Sci. 164, 111 (2000).
    14.T. H. P. Chang , M. Mankos, K. Y. Lee and L. P. Muray, Microelec. Eng. 57-58, 117 (2001).
    15.Y. Sohda , H. Ohta , F. Murai , J. Yamamoto , H. Kawano , H. Satoh and H. Itoh, Microelec. Eng. 67-68, 78 (2003).
    16.J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek and J. Bennett, Appl. Phys. Lett. 56, 2001 (1990).
    17.H. Sugimura, T. Uchida, N. Kitamura and H. Masuhara, Appl. Phys. Lett. 63, 1288 (1993).
    18.E. S. Snow and P. M. Campbell, Appl. Phys. Lett. 64, 1932 (1994).
    19.H. J. Song, M. J. Rack, K. Abugharbieh, S. Y. Lee, V. Khan, D. K. Ferry and D. R. Allee, J. Vac. Sci. Technol. B 12, 3720 (1994).
    20.S. C. Minne, H. T. Soh, Ph. Flueckiger and C. F. Quate, Appl. Phys. Lett. 66, 703 (1995).
    21.N. Kramer, J. Jorritsma, H. Birk and C. Schonenberger, Microelec. Eng. 27, 47 (1995).
    22.J. A. Dagata, Science 270, 1625 (1995).
    23.E. S. Snow and P. M. Campbell, Science 270, 1639 (1995).
    24.K. Matsumoto, M. Ishii and K. Segawa, J. Vac. Sci. Technol. B 14, 1331 (1996).
    25.E. S. Snow, D. Park and P. M. Campbell, Appl. Phys. Lett. 69, 269 (1996).
    26.C. S.Chang, W. B. Su and T. T. Tsong, Phys. Rev. Lett. 72, 574 (1994).
    27.G. S. Hsiao, R. M. Penner and J. Kingsley, Appl. Phys. Lett. 64, 1350 (1994).
    28.S. Hosaka and H. Koyanagi, Jpn. J. Appl. Phys. 33, 1358 (1994).
    29.H. Koyanagi, S. Hosaka, R. Imura and M. Shirai, Appl. Phys. Lett. 67, 2609 (1995).
    30.Z. Li, W. Liu and X. Li, Ultramicroscopy 73, 147 (1998).
    31.D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990).
    32.M. F. Crommie, C. P. Lutz and D. M. Eigler, Science 262, 218 (1993).
    33.M. F. Crommie, C. P. Lutz and D. M. Eigler, Nature 363, 524 (1993).
    34.M. F. Crommie, C. P. Lutz, D. M. Eigler and E. J. Heller, Surf. Rev. Lett. 2, 127 (1995).
    35.C. R. K. Marrian, F. K. Perkins, S. L. Brandow, T. S. Koloski, E. A. Dobisz and J. M. Calvert, Appl. Phys. Lett. 64, 390 (1994).
    36.J. Chen, M. A. Reed, C. L. Asplund, A. M. Cassell, M. L. Myrick, A. M. Rawlett, J. M. Tour and P. G. Van Patten, Appl. Phys. Lett. 75, 624 (1999).
    37.K. Kragler, E. Gunther, R. Leuschner, G. Falk, A. Hammerschmidt, H. van Seggern and G. Saemann–Ischenko, Appl. Phys. Lett. 67, 1163 (1995).
    38.E. A. Dobisz and C. R. Marrian, Appl. Phys. Lett. 58, 2526 (1991).
    39.M. A. McCord and R. F. W. Pease, J. Vac. Sci. Technol. B 4, 86 (1986).
    40.M. J. Lercel, M. Rooks, R. C. Tiberio, H. G. Craighead, C. W. Sheen, A. N. Parikh and D. L. Allara, J. Vac. Sci. Technol. B 13, 1139 (1995).
    41.M. Ishibashi, S. Heike, H. Kajiyama, Y.Wada and T. Hashizume, Appl. Phys. Lett. 72, 1581 (1998).
    42.A. Majumdar, P. I. Oden, J. P. Carrejo, L. A. Nagahara, J. J. Graham and J. Alexander, Appl. Phys. Lett. 61, 2293 (1992).
    43.S. W. Park, H. T. Soh, C. F. Quate and S.-I. Park, Appl. Phys. Lett. 67, 2415 (1995).
    44.T. Shiokawa, Y. Aoyagi, M. Shigeno and S. Namba, Appl. Phys. Lett. 72, 2481 (1998).
    45.M. Ishibashi, N. Sugita, S. Heike, H. Kajiyama and T. Hashizume, Jpn. J. Appl. Phys. 38, 2445 (1999).
    46.M. Ishibashi, S. Heike and T. Hashizume, Jpn. J. Appl. Phys. 39, 7060 (2000).
    47.M. Kato, M. Ishibashi, S. Heike and T. Hashizume, Jpn. J. Appl. Phys. 40, 4317 (2001).
    48.H. J. Mamin and D. Rugar, Appl. Phys. Lett. 61, 1003 (1992).
    49.L. L. Sohn and R. L. Willett, Appl. Phys. Lett. 67, 1552 (1995).
    50.V. Bouchiat and D. Esteve, Appl. Phys. Lett. 69, 3098 (1996).
    51.B. Klehn and U. Kunze, J. Appl. Phys. 85, 3897 (1999).
    52.M. Wendel, S. Kuhn, H. Lorenz, J. P. Kotthaus and M. Holland, Appl. Phys. Lett. 65, 1775 (1994).
    53.U. KUNZE, Superlatt. Microstr. 31, 3 (2002).
    54.Y. Lee, Y.-S. Jo and Y. Roh, Materi. Sci. Eng. 23, 833 (2003).
    55.A. F. Morpurgo, C. M. Marcus and D. B. Robinson, Appl. Phys. Lett. 74, 2084 (1999).
    56.H. X. He, S. Boussaad, B. Q. Xu, C. Z. Li and N. J. Tao, J. Electroana. Chem. 522, 167 (2002).
    57.M. M. Deshmukh, A. L. Prieto, Q. Gu and H. Park, Nano Lett. 3, 1383 (2003).
    58.Y. V. Kervennic, H. S. J. Van der Zant, A. F. Morpurgo, L. Gurevich and L. P. Kouwenhoven, Appl. Phys. Lett. 80, 321 (2002).
    59.M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, Science 278, 252 (1997).
    60.A. Bezryadin and C. Dekker, J. Vac. Sci. Technol. B 15, 793 (1997).
    61.A. Bezryadin, C. Dekker and G. Schmid, Appl. Phys. Lett. 71, 1273 (1997).
    62.D. Porath, A. Bezryadin, S. de Vries and C. Dekker, Nature 403, 635 (2000).
    63.H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park and P. L. McEuen, Appl. Phys. Lett. 75, 301 (1999).
    64.S. I. Khondaker and Z. Yao, Appl. Phys. Lett. 81, 4613 (2002).
    65.W. Liang, M. P. Shores, M. Bockrath and J. R. Long, Nature 417, 725 (2002).
    66.J. Lefebvre, M. Radosavljevic, and A. T. Johnson, Appl. Phys. Lett. 76, 3828 (2000).
    67.J. Chen, M. A. Reed, A. M. Rawlett and J. M. Tour, Science 286, 1550 (1999).
    68.G. V. Nazin, X. H. Qiu and W. Ho, Science 302, 77 (2003).
    69.G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel, Phys. Rev. Lett, 49, 56 (1982).
    70.G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).
    71.I. I. Smolyaninov, D. L. Mazzoni and C. C. Davis, Appl. Phys. Lett. 67, 3859 (1995).
    72.http://www.cnf.cornell.edu/SPIEBook/spie7.htm
    73.J. J. Thomson, Proc. Camb. Phil. Soc. 11, 120 (1901).
    74.A. C. B. Lovell, Proc. Roy. Soc. A 157, 311 (1936).
    75.K. Fuchs, Proc. Camb. Phil. Soc. 34, 100 (1938).
    76.E. R. Andrew, Proc. Phys. Soc. A 62, 77 (1949).
    77.D. K. C. McDonald, K. Sarginson Proc. Roy. Soc. A 203, 223 (1950).
    78.R. B. Dingle, Proc. Roy. Soc. A 201, 545 (1950).
    79.E. H. Sondheimer, Adv. Phys. 1, 1 (1952).
    80.E. Scheer, N. Agrait, J. C. Cuevas, A. L. Yeyati, B. Ludoph, A. Martin-Rodero, G. R. Bollinger, J. M. van Ruitenbeek and C. Urbina, Nature 394, 154 (1998).
    81.R. Landuaer, IBM J. Res. Dev. 1, 223 (1957).
    82.R. Landuaer, Philos. Mag. 21, 863 (1970).
    83.M. Nekovee, B. J. Geurts., H. M. J. Boots and M. F. H. Schuurmans, Phys. Rev. B 45, 6643 (1992).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE