研究生: |
劉學文 Liu, Hsueh-Wen |
---|---|
論文名稱: |
以酸鹼響應嵌段共聚物做為Bcl-2小分子干擾核糖核酸及阿黴素二合一之載體來治療三陰性乳癌 pH-Responsive Block Copolymer as a Bcl-2 siRNA and Doxorubicin Two-in-one Carrier for Triple-Negative Breast Cancer Therapy |
指導教授: |
彭之皓
Peng, Chi-How |
口試委員: |
陳俊太
Chen, Jiun-Tai 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 131 |
中文關鍵詞: | 高分子微胞 、酸鹼響應 、阿黴素 、Bcl-2小分子干擾核糖核酸 、協同效應 |
外文關鍵詞: | Nanoparticles, pH response, DOX, Bcl-2 siRNA, Synergistic Effect |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
結合化學治療和基因治療,使其於癌症治療中產生協同效應達到誘導增強治療的功效,為了實現這一目標本研究設計不同長度之三嵌段共聚物PEG-b-PDMAEMA-b-PDPA與隨機共聚物PEG-b-(PDMAEMA-r-PDPA),用於將阿黴素(DOX)和Bcl-2小分子干擾核糖核酸(siRNA)靶向同時遞送到三陰性乳癌細胞中。探討其自組裝構型差異與不同鏈長之共聚物,對於藥物載送效果的影響,以及探討共同負載之兩種藥物間的協同效應。由實驗結果得知,三嵌段共聚物具有較佳的藥物包覆能力,而其中具有最長PDMAEMA鏈段之共聚物PEG113-b-PDMAEMA55-b-PDPA59(LB)有著最佳的載送效果。PEG113-b-PDMAEMA55-b-PDPA59(LB)之阿黴素包覆效率能夠達到80%,於pH= 7.4與5.0的環境下分別進行體外釋放,24小時阿黴素之累積釋放率分別達到24%與 68%,而若延長至96小時,則可達40%與接近100%的累積釋放率。而在氮磷比為20的條件下,PEG113-b-PDMAEMA55-b-PDPA59(LB)負載小分子干擾核糖核酸之包覆效率能高達94%,使其於pH= 7.4與5.0的環境下釋放了24小時後,其累積釋放率分別為14.6%與59%,由以上實驗之差距可以得知,PEG113-b-PDMAEMA55-b-PDPA59(LB)奈米載體具有相當靈敏之酸鹼響應。重要的是,於三陰性乳癌細胞(MDA-MB-231)之細胞活性實驗中,PEG113-b-PDMAEMA55-b-PDPA59(LB)載體包覆Bcl-2小分子干擾核糖核酸以及阿黴素之毒殺效果,比只包覆阿黴素之載體多出了約20%,證實兩者藥物有顯著的協同效應,也證實PEG113-b-PDMAEMA55-b-PDPA59(LB)微胞能夠成功地將雙藥負載運送至細胞中。期許未來能夠提供作為結合基因治療與化療藥物之複合治療載體平台,並用於三陰性乳癌的靶向治療,對治療方面有所貢獻 。
The combination of chemotherapy and gene therapy is known to induce the enhanced therapeutic efficacy in the cancer therapy, which is called synergistic effect. In this study, triblock copolymer(PEG-b-PDMAEMA-b-PDPA)and random copolymer(PEG-b-(PDMAEMA-r-PDPA))with different composition has been designed as the co-delivery platforms, which targeted simultaneous delivery of doxorubicin (DOX) and Bcl-2 small interfering RNA (siRNA) into breast cancer cells. The efficiency of drug encapsulation was optimized by changing the chain length, composition and self-assembled configuration of copolymer. The experimental results show that the triblock copolymer has better drug-carrying capacity than the random copolymer. The copolymer PEG113-b-PDMAEMA55-b-PDPA59(LB) with the longest PDMAEMA segment is the best carrier. The drug loading efficiency of DOX could achieve around 80%, and the condensation efficiency of siRNA was 94% under N/P = 20. Co-loading of Bcl-2 siRNA and DOX wouldn't affect the high carry efficiency. In vitro drug cumulative release rate of DOX was 40% and nearly 100% at the environment of pH=7.4 and 5.0 in 96 hrs. In 24 hours, the cumulative release rate of siRNA could reach 14.6% and 59% in the environment of pH=7.4 and 5.0. The significant difference between the two environments demonstrated that these nanoparticles have a very sensitive pH response. And it could be used as a good platform for the combination of chemotherapy and gene therapy.
Importantly, by the results of cell viability, the codelivery of Bcl-2 siRNA and DOX showed significantly enhanced toxicity in MDA-MB-231 breast cancer cells around 20% more than the codelivery of control siRNA and DOX in 50 nM of siRNA. Therefore, a significant synergistic effect between Bcl-2 siRNA and DOX has been observed. PEG113-b-PDMAEMA55-b-PDPA59(LB) micelles thus confirmed to be able to carry the dual drug into the cells. These results indicate DOX/Bcl-2 siRNA co-delivery system by PEG113-b-PDMAEMA55-b-PDPA59(LB) is promising for targeted treatment of breast cancer.
1. Gilman, A. The Initial Clinical Trial of Nitrogen Mustard. Am. J. Surg. 1963, 105, 574-578.
2. Farber, S.; Diamond, L.; Mercer, R.; Sylvester, R.; Wolff, J. Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid (Aminopterin) New. Engl. J. Med. 1948, 238, 787-793.
3. Nitiss, J. Targeting DNA Topoisomerase II in Cancer Chemotherapy. Nat. Rev. Cancer 2009, 9, 338-350.
4. Zhu, H.; Sarkar, S.; Scott, L.; Danelisen, I.; Trush, M.; Jia, Z.; Li, R. Doxorubicin Redox Biology: Redox Cycling, Topoisomerase Inhibition, and Oxidative Stress. Reactive Oxygen Species 2016, 1, 189-198.
5. Morrison, B.; Morris, J.; Steel, J. Lung Cancer-Initiating Cells: A Novel Target for Cancer Therapy. Target Oncol. 2013, 8, 159-172.
6. Bou-Assaly, W.; Mukherji, S. Cetuximab (Erbitux) Am. J. Neuroradiol. 2010, 31, 626-627.
7. Luo D.; Saltzman WM. Synthetic DNA delivery systems. Nat. Biotechnol. 2000, 18, 33–37.
8. Hamilton AJ.; Baulcombe DC. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 1999, 286, 950–952.
9. Meister G.; Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004, 431, 343-349
10 Pritchard CC.; Cheng HH.; Tewari M. MicroRNA profiling: approaches and considerations. Nat. Rev. Genet. 2012, 13, 358–369.
11. Matsumura, Y.; Maeda, H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986, 46, 6387-6392.
12. Peer, D.; Karp, J.; Hong, S.; Farokhzad, O.; Margalit, R.; Langer, R. Nanocarriers as an Emerging Platform for Cancer Therapy. Nat. Nanotechnol. 2007, 2, 751-760.
13. Gatenby, R.; Gillies, R. Why Do Cancers Have High Aerobic Glycolysis? Nat. Rev. Cancer 2004, 4, 891-899.
14. Cheng, R.; Meng, F.; Deng, C.; Zhong, Z. Bioresponsive Polymeric Nanotherapeutics for Targeted Cancer Chemotherapy. Nano Today 2015, 10, 656-670.
15. Low, P.; Henne, W.; Doorneweerd, D. Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Acc. Chem. Res. 2008, 41, 120-129.
16. Trachootham, D.; Alexandre, J.; Huang, P. Targeting Cancer Cells by ROS-Mediated Mechanisms: A Radical Therapeutic Approach? Nat. Rev. Drug Discovery 2009, 8, 579-591.
17. Varkouhi, A.; Scholte, M.; Storm, G.; Haisma, H. Endosomal Escape Pathways for Delivery of Biologicals. J. Controlled Release 2011, 151, 220-228.
18. Li, W.; Nicol, F.; Szoka, F. GALA: A Designed Synthetic pH-Responsive Amphipathic Peptide with Applications in Drug and Gene Delivery. Adv. Drug Deliverery Rev. 2004, 56, 967-985.
19. Zelphati; Szoka Mechanism of Oligonucleotide Release from Cationic Liposomes. Proc. Natl. Acad. Sci. 1996, 93, 11493-11498.
20. Pack, D.; Hoffman, A.; Pun, S.; Stayton, P. Design and Development of Polymers for Gene Delivery. Nat. Rev. Drug Discovery 2005, 4, 581-593.
21. Cabral, H.; Nakanishi, M.; Kumagai, M.; Jang, W.-D.; Nishiyama, N.; Kataoka, K. A Photo-Activated Targeting Chemotherapy Using Glutathione Sensitive Camptothecin-Loaded Polymeric Micelles. Pharm. Res. 2009, 26, 82-92.
22. El-Sayed, A.; Futaki, S.; Harashima, H. Delivery of Macromolecules Using Arginine-Rich Cell-Penetrating Peptides: Ways to Overcome Endosomal Entrapment. AAPS. J. 2009, 11, 13-22.
23. Zhang, L.; Eisenberg, A. Multiple Morphologies of “Crew-Cut” Aggregates of Polystyrene-b-Poly(acrylic Acid) Block Copolymers. Science 1995, 268, 1728-1731.
24. Torchilin, V. Recent Advances with Liposomes as Pharmaceutical Carriers. Nat. Rev. Drug Discovery 2005, 4, 145-160.
25. Discher, D.; Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 2006, 8, 323-341.
26. Harris, M.; Chess, R. Effect of Pegylation on Pharmaceuticals. Nat. Rev. Drug Discovery 2003, 2, 214-221.
27. Li, S.; Meng, F.; Wang, Z.; Zhong, Y.; Zheng, M.; Liu, H.; Zhong, Z. Biodegradable Polymersomes with an Ionizable Membrane: Facile Preparation, Superior Protein Loading, and Endosomal pH-Responsive Protein Release. Eur. J. Pharm. Biopharm. 2012, 82, 103-111.
28. Du, Y.; Chen, W.; Zheng, M.; Meng, F.; Zhong, Z. pH-Sensitive Degradable Chimaeric Polymersomes for the Intracellular Release of Doxorubicin Hydrochloride. Biomaterials 2012, 33, 7291-7299.
29. Wang, L.; Liu, G.; Wang, X.; Hu, J.; Zhang, G.; Liu, S. Acid-Disintegratable Polymersomes of pH-Responsive Amphiphilic Diblock Copolymers for Intracellular Drug Delivery. Macromolecules 2015, 48, 7262-7272.
30. Pearson, R.; Warren, N.; Lewis, A.; Armes, S.; Battaglia, G. Effect of pH and Temperature on PMPC–PDPA Copolymer Self-Assembly. Macromolecules 2013, 46, 1400-1407.
31. Massignani, M.; Canton, I.; Sun, T.; Hearnden, V.; MacNeil, S.; Blanazs, A.; Armes, S.; Lewis, A.; Battaglia, G. Enhanced Fluorescence Imaging of Live Cells by Effective Cytosolic Delivery of Probes. PLos One 2010, 5, e10459.
32. Sun, H.; Guo, B.; Li, X.; Cheng, R.; Meng, F.; Liu, H.; Zhong, Z. Shell-Sheddable Micelles Based on Dextran-SS-Poly(epsilon-Caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin. Biomacromolecules 2010, 11, 848-854.
33. Chen, W.-H.; Luo, G.-F.; Lei, Q.; Jia, H.-Z.; Hong, S.; Wang, Q.-R.; Zhuo, R.-X.; Zhang, X.-Z. MMP-2 Responsive Polymeric Micelles for Cancer-Targeted Intracellular Drug Delivery. Chem. Commun. 2014, 51, 465-468.
34. Zhao, X.; Qi, M.; Liang, S.; Tian, K.; Zhou, T.; Jia, X.; Li, J.; Liu, P. Synthesis of Photo- and pH Dual-Sensitive Amphiphilic Copolymer PEG43-b-P(AA76-co-NBA35-co-tBA9) and Its Micellization as Leakage-Free Drug Delivery System for UV-Triggered Intracellular Delivery of Doxorubicin. ACS Appl. Mater. Interfaces 2016, 8, 22127-22134.
35. Schelté; Boeckler, C.; Frisch, B.; Schuber, F. Differential Reactivity of Maleimide and Bromoacetyl Functions with Thiols: Application to the Preparation of Liposomal Diepitope Constructs. Bioconjugate Chem. 2000, 11, 118-123.
36. Vanderhooft, J.; Mann, B.; Prestwich, G. Synthesis and Characterization of Novel Thiol-Reactive Poly(ethylene Glycol) Cross-Linkers for Extracellular-Matrix-Mimetic Biomaterials. Biomacromolecules 2007, 8, 2883-2889.
37. Mather, B.; Viswanathan, K.; Miller, K.; Long, T. Michael Addition Reactions in Macromolecular Design for Emerging Technologies. Prog. Polym. Sci. 2006, 31, 487-531.
38. Youziel, J.; Akhbar, A.; Aziz, Q.; Smith, M.; Caddick, S.; Tinker, A.; Baker, J. Bromo- and Thiomaleimides as a New Class of Thiol-Mediated Fluorescence “turn-On” Reagents. Org. Biomol. Chem. 2013, 12, 557-560.
39. Saito, G.; Swanson, J.; Lee, K.-D. Drug Delivery Strategy Utilizing Conjugation via Reversible Disulfide Linkages: Role and Site of Cellular Reducing Activities. Adv. Drug Deliverery Rev. 2003, 55, 199-215.
40. Güçlü, K.; Özyürek, M.; Güngör, N.; Baki, S.; Apak, R. Selective Optical Sensing of Biothiols with Ellman’s Reagent: 5,5′-Dithio-bis(2-Nitrobenzoic Acid)-Modified Gold Nanoparticles. Anal. Chim. Acta 2013, 794, 90-98.
41. Smith, M.; Schumacher, F.; Ryan, C.; Tedaldi, L.; Papaioannou, D.; Waksman, G.; Caddick, S.; Baker, J. Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides. J. Am. Chem. Soc. 2010, 132, 1960-1965.
42. Mabire, A.; Robin, M.; Quan, W.-D.; Willcock, H.; Stavros, V.; O’Reilly, R. Aminomaleimide Fluorophores: A Simple Functional Group with Bright, Solvent Dependent Emission. Chem. Commun. 2015, 51, 9733-9736.
43. Robin, M. P.; Wilson, P.; Mabire, A.; Kiviaho, J.; Raymond, J.; Haddleton, D.; O’Reilly, R. Conjugation-Induced Fluorescent Labeling of Proteins and Polymers Using Dithiomaleimides. J. Am. Chem. Soc. 2013, 135, 2875-2878.
44. Liang, L.; Astruc, D. The copper(I)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) “click” Reaction and Its Applications. An Overview. Coord. Chem. Rev. 2011, 255, 2933-2945.
45. Jones, M.; Strickland, R.; Schumacher, F.; Caddick, S.; Baker, J.; Gibson, M.; Haddleton, D. Highly Efficient Disulfide Bridging Polymers for Bioconjugates from Radical-Compatible Dithiophenol Maleimides. Chem. Commun. 2012, 48, 4064-4066.
46. Matyjaszewski, K.; Spanswick, J. Controlled/living Radical Polymerization. Materials Today 2005, 8, 26-33.
47. Robin, M.; Jones, M.; Haddleton, D.; O’Reilly, R. Dibromomaleimide End Functional Polymers by RAFT Polymerization Without the Need of Protecting Groups. ACS Macro Lett. 2012, 1, 222-226.
48. Wang, H.; Xu, M.; Xiong, M.; Cheng, J. Reduction-Responsive Dithiomaleimide-Based Nanomedicine with High Drug Loading and FRET-Indicated Drug Release. Chem. Commun. 2015, 51, 4807-4810.
49. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-Di-Tert-Butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721-1723.
50. Tang, W.; Tsarevsky, N.; Matyjaszewski, K. Determination of Equilibrium Constants for Atom Transfer Radical Polymerization. J. Am. Chem. Soc. 2006, 128, 1598-604.
51. Tang, W.; Kwak, Y.; Braunecker, W.; Tsarevsky, N.; Coote, M.; Matyjaszewski, K. Understanding Atom Transfer Radical Polymerization: Effect of Ligand and Initiator Structures on the Equilibrium Constants. J. Am. Chem. Soc. 2008, 130, 10702-10713.
52. Matyjaszewski, K.; Tsarevsky, N. Nanostructured Functional Materials Prepared by Atom Transfer Radical Polymerization. Nat. Chem. 2009, 1, 276-288.
53. Mabire, A.; Robin, M.; Willcock, H.; Pitto-Barry, A.; Kirby, N.; O’Reilly, R. Dual Effect of Thiol Addition on Fluorescent Polymeric Micelles: ON-to-OFF Emissive Switch and Morphology Transition. Chem. Commun. 2014, 50, 11492-11495.
54. Jens Gaitzsch.; Vijay Chudasama.; Eloise Morecroft.; Lea Messager.; Giuseppe Battaglia. Synthesis of an Amphiphilic Miktoarm Star Terpolymer for Self-Assembly into Patchy Polymersomes. ACS Macro Lett. 2016, 5, 351−354
55. James-Kevin Y.; Tan, Jennifer L.; Choi, Hua Wei.; Joan G. Schellinger.; Suzie H.; Pun. Biomater. Reducible, dibromomaleimide-linked polymers for gene delivery. Sci., 2015, 3, 112–120
56. Mathew W. Jones.; Rachel A. Strickland.; Felix F. Schumacher.; Stephen Caddick, James.; R. Baker, Matthew I.; Gibson.; David M. Haddleton. Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. J. Am. Chem. Soc. 2012, 134, 1847−1852
57. Hua Wang.; Ming Xu.; Menghua Xionga.; Jianjun Cheng. Reduction-responsive dithiomaleimide-based nanomedicine with high drug loading and FRET-indicated drug release. Chem. Commun., 2015, 51, 4807−4810
58. Marc Karman.; Ester Verde-Sesto.; Christoph Weder.; and Yoan C. Simon. Mechanochemical Fluorescence Switching in Polymers Containing Dithiomaleimide ACS Macro Lett. 2018, 7, 1099−1104
59. König, H.; Gorelik, T.; Kolb, U.; Kilbinger, A. Supramolecular PEG-co-Oligo(p-Benzamide)s Prepared on a Peptide Synthesizer. J. Am. Chem. Soc. 2007, 129, 704-708.
60. Jones, M.; Strickland, R.; Schumacher, F.; Caddick, S.; Baker, J.; Gibson, M.; Haddleton, D. Polymeric Dibromomaleimides As Extremely Efficient Disulfide Bridging Bioconjugation and Pegylation Agents. J. Am. Chem. Soc. 2012, 134, 1847-1852.