簡易檢索 / 詳目顯示

研究生: 黃啟明
論文名稱: "樣本平均數變異數"之理想線性組合估計式分析
指導教授: 桑慧敏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 31
中文關鍵詞: 樣本平均數變異數線性組合
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在模擬實驗中,我們通常需要考慮兩個重要的問題:一是如何選擇適當的績效衡量指標(performance measure);決定了績效衡量指標之後,另一個問題便是如何決定績效衡量指標的品質(quality measure)。對於前者,我們通常以母體平均數作為績效衡量指標,以樣本平均數為其點估計(point estimator)。對於後者,我們通常以樣本平均數的變異數大小作為其品質指標,本論文就是研究這個問題。
    針對一個自我相關穩態的模擬輸出序列(stationary process),已有許多學者發表關於估計樣本平均數的變異數的方法,其中有許多估計樣本平均數變異數的估計式是以批量大小為參數的批量估計式。如何估計出最佳的批量目前仍是待解決的難題。
    本論文目的乃是希望推導出一個理想的估計量,但避免直接估計最佳批量的途徑試以兩個批量估計式之線性組合模式為出發點,企圖尋求出最佳的線性組合係數以得到一個樣本平均數變異數的理想線性組合估計式。


    目 錄 摘 要 i 誌 謝 詞 ii 第 1 章 緒 論 1 1-1 研究背景 1 1-2 研究目的 2 1-3 符號定義 3 第 2 章 文獻回顧 4 2-1 批量估計式(Batch means) 4 2-2 近似最佳批量估計式(1-2-1 OBM) 7 第 3 章 Song 的線性組合估計式 9 3-1 一般型線性組合估計式模型 9 3-2 特殊型線性組合估計式模型 10 第 4 章 線性組合估計式之演算法 12 4-1 各參數之估計式 12 4-2 線性組合估計式之演算法 14 第 5 章 實驗結果與討論 16 5-1 實驗模式與條件 16 5-2 實驗結果 18 5-3 結果分析與討論 23 第 6 章 結論與未來研究方向 27 6-1 結論 27 6-2 未來研究方向 27 參考文獻 28 表 目 錄 表 5.1:AR(1)實驗參數表,樣本數30,Var(Y-bar)=1 17 表 5.2:M/M/1實驗參數表,樣本數30,Var(Y-bar)=1 17 表 5.3:AR(1)模式結果 19 表 5.4:M/M/1模式結果 20 表 5.5:AR(1)模式下,自我相關係數估計值結果 21 表 5.6:M/M/1模式下,自我相關係數估計值結果 21 表 5.7:AR(1)模式下之改善率 25 表 5.8:M/M/1模式下之改善率 25 圖 目 錄 圖 2.1:批量估計式 7 圖 5.1:AR(1)模式下,自我相關係數估計值之圖形 21 圖 5.2:AR(1)模式下,各估計式之均方誤 22 圖 5.3:M/M/1模式下,自我相關係數估計值之圖形 22 圖 5.4:M/M/1模式下,各估計式之均方誤 23 圖 5.5:AR(1)模式下,線性組合估計式與1-2-1OBM 之均方誤 24 圖 5.6:M/M/1模式下,線性組合估計式與1-2-1OBM 之均方誤 25

    Crane, M. A., and Iglehart, D. L. 1975. Simulating stable stochastic systems, III: regenerative processes and discrete-event simulations. Operations Research, 23, 33-45.
    [2] Crane, M. A., and Lemoine, A. J. 1977. An Introduction to the Regenerative Method for Simulation Analysis. Lecture Notes in Control and Information Sciences, vol. 4. Springer-Verlag, New York.
    [3] Glynn, P. W., and Iglehart, D. L. 1986. Estimation of steady-state central moments by the regenerative method of simulation. Operations Research Letters, 5, 271-276.
    [4] Priestly, M. B. 1981. Spectral Analysis and Time Series. Academic Press, London.
    [5] Heidelberger, P., and Welch, P. D. 1981. A spectral method for confidence interval generation and run length control in simulation. Communications of the ACM, 24, 233-245.
    [6] Foley, R. D. and Goldsman, D. 1988. Confidence intervals using orthonormally weighted standardized time series. In Proceedings of the Winter Simulation Conference, 422-424.
    [7] Goldsman, D., Kang, K. and Seila, A. F. 1993. Cramer-von Mises variance estimators for simulations. Technical Report, School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, Georgia.
    [8] Welch, P.D. 1987. On the relationship between batch means, overlapping batch means and spectral estimation. In Proceedings of the Winter Simulation Conference, 320-323.
    [9] Hanna, E. J. 1957. The variance of the mean of a stationary process. Journal of the Royal Statistical Society, B 19, 282-285.
    [10] Moran, P. A. P. 1975. The estimation of standard errors in Monte Carlo simulation experiments. Biometrika, 62, 1-4.
    [11] Schmeiser, B. W. 1982. Batch size effects in the analysis of simulation output. Operations Research 30, 556-568.
    [12] Meketon, M. S. and B. W. Schmeiser. 1984. Overlapping batch means: Something for nothing ? In Proceedings of the Winter Simulation Conference, 227-230.
    [13] Schruben, L. W.1983. Confidence interval estimation using standardized time series. Operations Research 31, 1090-1108.
    [14] Glynn, P. W. and Iglehart, D. L. 1990. Simulation output analysis using standardized time series. Mathematics of Operations Research, 15, 1-16.
    [15] Song, W.-M.T., “Estimators of the variance of the sample mean: Quadratic forms, optimal batch sizes, and linear combinations”, Ph.D. Dissertation, School of Industrial Engineering, Purdue University, 1988.

    [16] Song,W.-M.T., and B. W. Schmeiser. 1988a. On the Dispersion Matrix of Variance Estimators of the Sample Mean in the Analysis of Simulation Output. Opns. Res. Letts. 7, 259-266.
    [17] Song,W.-M.T., and B. W. Schmeiser. 1988b. Minimal-mse Linear Combinations of Variance Estimators of the Sample Mean. In Proceedings of the Winter Simulation Conference, M. Abrams, P. Haigh and J. Comfort (eds.), 414-421.
    [18] Song,W.-M.T., 1996. On the estimation of optimal batch sizes in the analysis of simulation output. European Journal of Operational Research, Vol: 88, Issue: 2, p. 304-319, January 20, 1996.
    [19] Pedrosa and B. W. Schmeiser, 1994. Estimating Variance of the Sample Mean: Optimal Batch-Size Estimation and 1-2-1 Overlapping Batch Means.
    [20] Song,W.-M.T., and Schmeiser, B. W. 1995. Optimal mean-squared-error batch size. Management Science, vol:41, No.1, January.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE