研究生: |
黃彥鈞 Huang, Yen-Chun |
---|---|
論文名稱: |
液態錫銀銲料與碲基材之界面反應研究 A study of interfacial reaction between molten Sn-Ag solder and Te substrate |
指導教授: |
廖建能
Liao, Chien-Neng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 銲料 、熱電模組 、介金屬化合物 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以碲化鉍為基礎的熱電材料具有室溫下最突出的熱電性質,但是當其與銲錫發生反應時將生成SnTe此介金屬化合物,嚴重威脅銲料接點的電性質與機械性質。除了在熱電元件表面鍍鎳作為擴散阻障層之外,改變銲料的成分試圖抑制或是減緩SnTe的生成亦是可行的方法。
本研究將針對液態錫銀銲料與熱電材料的主元素碲之間的界面反應,探討在相同反應溫度250 ℃之下,不同銀添加量以及不同反應時間對介金屬化合物的厚度和形貌的影響。結果顯示在銲錫中添加超過1 wt.%銀元素,反應界面將生成Ag2Sn3Te5以及Ag3Te2介金屬化合物阻擋液態銲錫與碲基材的直接接觸反應,達到抑制SnTe成長的效果,即使反應時間長達300分鐘,SnTe的厚度維持在11 □m,遠比純錫銲料所生成的570 □m來得少。當錫銀銲料與碲基材一產生接觸便生成Ag3Te2與SnTe,但是Ag3Te2進一步地與銲料中的錫發生反應再生成Ag2Sn3Te5以及SnTe,因此反應初期觀察到SnTe異常增厚、反應後期SnTe的生長受到抑制。
另外在本實驗中發現,當SnTe相的厚度不再增加時將進行保守場的熟化作用,隨著反應時間增加SnTe與銲料的界面形貌越來越不平整,SnTe顆粒產生明顯粗化現象。藉由俯視的電子顯微影像觀察,計算出SnTe平均顆粒半徑大致隨反應時間的1/3次方增加,與理論推測結果相符。
Telluride-based thermoelements can react with Sn-contained solders and form SnTe intermetallic compounds that may deteriorate electrical and mechanical properties of soldered junctions. In addition to the diffusion barrier approach, chemical composition of the solder alloys could be adjusted to suppress or decrease the rate of SnTe formation.
In this study the effects of Ag addition (0.1, 1, 3.5, 5 wt.%) in pure Sn on the interfacial reaction between molten solder and Te substrate is explored. It is found that the thickness of SnTe compound is reduced after soldering reaction when more than 1 wt.% Ag is added into Sn solder. For an identical time of 300 minutes, the SnTe thickness is decreased from 570 □m for a pure Sn and Te reaction to only 11 □m for a Sn-Ag alloy and Te reaction. The suppression of SnTe compound formation is associated with the presence of Ag3Te2 and Ag2Sn3Te5 ternary compounds that are located in between the SnTe compound and the Te substrate. However, the rate at which SnTe initially forms is enhanced as the formation of SnTe originates from two different sources: byproduct of molten solder and Te substrate (Ag3Te2 and SnTe) and excess SnTe when Ag3Te2 further reacts with Sn in the solder (Ag2Sn3Te5 and SnTe).
When the thickness of SnTe remains essentially constant, SnTe undergoes a conservative ripening, resulting in surface roughening. Based on top-view scanning electron microscopy micrographs, it is calculated that SnTe particles size increase approximately with the cube root of reaction time.
[1] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials 7 (2008), no. 2, 105-114.
[2] A. W. Vanherwaarden and P. M. Sarro, Thermal sensors based on the Seebeck effect, Sensors and Actuators 10 (1986), no. 3-4, 321-346.
[3] Y. G. Gurevich and G. N. Logvinov, Theory of thermoelectric cooling in semiconductor structures, Revista Mexicana De Fisica 53 (2007), no. 5, 337-349.
[4] G. Min and D. M. Rowe, Cooling performance of integrated thermoelectric microcooler, Solid-State Electronics 43 (1999), no. 5, 923-929.
[5] M. Yahatz and J. Harper, Thermoelectric module for electricity generation, refrigeration and heating - comprises thermoelectric elements soldered to busbar with phosphorus-nickel surface using solder comprising antimony and bismuth, MELCOR CORP (MELC-Non-standard), 1998, pp. 870337-A870331:.
[6] Wang, W. C. and Y. L. Chang, Therml Deformation Measurement in Thermoelectric Coolers by ESPI, 2008 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, Orlando, Florida, June 2-5. (Accepted)
[7] K. J. Puttlitz and G. T. Galyon, Impact of the ROHS Directive on high-performance electronic systems - Part II: key reliability issues preventing the implementation of lead-free solders, Journal of Materials Science-Materials in Electronics 18 (2007), no. 1-3, 347-365.
[8] T. Laurila, V. Vuorinen and J. K. Kivilahti, Interfacial reactions between lead-free solders and common base materials, Materials Science & Engineering R-Reports 49 (2005), no. 1-2, 1-60.
[9] K. N. Tu, A. M. Gusak and M. Li, Physics and materials challenges for lead-free solders, Journal of Applied Physics 93 (2003), no. 3, 1335-1353.
[10] M. Kamal and E. S. Gouda, Study of structural changes and properties of some Sn-Ag lead-free solder alloys, European Physical Journal-Applied Physics 40 (2007), no. 2, 203-205.
[11] D. Q. Yu, C. M. L. Wu, C. M. T. Law, L. Wang and J. K. L. Lai, Intermetallic compounds growth between Sn-3.5Ag lead-free solder and Cu substrate by dipping method, Journal of Alloys and Compounds 392 (2005), no. 1-2, 192-199.
[12] J. Wang, L. G. Zhang, H. S. Liu, L. B. Liu and Z. P. Jin, Interfacial reaction between Sn-Ag alloys and Ni substrate, Journal of Alloys and Compounds 455 (2008), no. 1-2, 159-163.
[13] C. M. Chen and S. W. Chen, Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions, Journal of Applied Physics 90 (2001), no. 3, 1208-1214.
[14] J. W. Jang, L. N. Ramanathan and D. R. Frear, Electromigration behavior of lead-free solder flip chip bumps on NiP/Cu metallization, Journal of Applied Physics 103 (2008), no. 12, 1-5.
[15] C. N. Liao, C. H. Lee and W. J. Chen, Effect of interfacial compound formation on contact resistivity of soldered junctions between bismuth telluride-based thermoelements and copper, Electrochemical and Solid State Letters 10 (2007), no. 9, 23-25.
[16] C. N. Liao and C. H. Lee, Suppression of vigorous liquid Sn/Te reactions by Sn-Cu solder alloys, Journal of Materials Research 23 (2008), no. 12, 3303-3308.
[17] T. B. Massalski and H. Okamoto, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, 1990.
[18] I. Karakaya and W. T. Thompson, The Ag-Te (silver-tellurium) system, Journal of Phase Equilibria 12 (1991), no. 1, 56-63.
[19] F. C. Kracek and C. J. Ksanda, Phase relationships in the system tellurium-silver, Transactions, American Geophysical Union (1940).
[20] M. Chikashige and I. Saito, Metallographic examination of the system silver and tellurium, Mem. Coll. Sci. Univ. Kyoto 1 (1916), 361-368.
[21] V. Koern, The binary alloy system silver-tellurium, Naturwissenschaften 27 (1939), 432.
[22] S. K. Sharma, Transformation of structure in Ag-Te alloy films, Nature 198 (1963), 280-281.
[23] I. Barin, O. Knacke and O. Kubaschewski, Thermochemical properties of inorganic substances, Springer-Verlag, Berlin, 1977.
[24] T. Ohtani, K. Maruyama and K. Ohshima, Synthesis of copper, silver, and samarium chalcogenides by mechanical alloying, Materials Research Bulletin 32 (1997), no. 3, 343-350.
[25] R. Z. Chen, D. S. Xu, G. L. Guo and Y. Q. Tang, Electrodeposition of thin films and single-crystalline nanowires of Ag7Te4, Chemical Physics Letters 377 (2003), no. 1-2, 205-209.
[26] S. W. Chen and C. N. Chiu, Unusual cruciform pattern interfacial reactions in Sn/Te couples, Scripta Materialia 56 (2007), no. 2, 97-99.
[27] R. W. Balluffi, S. M. Allen and W. C. Carter, Kinetics of materials, Wiley-Interscience, Hoboken, 2005, 363-371
[28] H. K. Kim, K. N. Tu and P. A. Totta, Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joints on Si wafers, Applied Physics Letters 68 (1996), no. 16, 2204-2206.
[29] A. M. Gusak and K. N. Tu, Kinetic theory of flux-driven ripening, Physical Review B 66 (2002), no. 11, 1-14.
[30] I. Barin and G. Platzki, Thermochemical data of pure substances, Wiley-VCH, New York, 1995, 1556