簡易檢索 / 詳目顯示

研究生: 王碩宏
Wang, Shuo-Hong
論文名稱: 低玻璃轉換溫度之非鐵基塊狀金屬玻璃之研究
Exploration of non-ferrous bulk metallic glasses with low glass transition temperature
指導教授: 金重勳
Chin, Tsung-Shune
口試委員: 謝克昌
葉均蔚
李丕耀
鄭憲清
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 124
中文關鍵詞: 低玻璃轉化溫度塊狀金屬玻璃金基鈣基熱機械性質黏度腐蝕空氣電池
外文關鍵詞: Low glass transition temperature, Bulk metallic glass, Au-based, Ca-based, Thermomechanical property, Vuscosity, Corrosion, Air battery
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來在成本效益的考量下,可預期具有低玻璃轉換溫度及低成本之塊狀金屬玻璃將可提升其應用上的價值。本研究主要在於開發新式金基及鈣基塊狀金屬玻璃,與研究其熱機械性質及探討微量添加元素之影響,並試圖找出新的應用。對於具有低玻璃轉換溫度的四元金基塊狀金屬玻璃而言,Sn被用來降低Au的含量以提升其成本效益。此塊狀金屬玻璃之有效黏度範圍為1E8 − 1E9 Pa.s。而其最低黏度值約落在100 °C,這將使得此塊狀金屬玻璃能在沸水中便易於加工變形。因此,此塊狀金屬玻璃將可被應用於奈米壓印,奈米微機電系統,珠寶首飾,及牙科補綴材料。再者,對於同樣具有低玻璃轉換溫度的鈣基塊狀金屬玻璃而言,因組成成分所需成本較低,故屬於具有成本效益之塊狀金屬玻璃。Li的微量添加除了可降低Ca65Mg15Zn20塊狀金屬玻璃本身之玻璃轉換溫度之外,並無太大的效用,卻反而會增加Ca65Mg15Zn20塊狀金屬玻璃之黏度。故Ca65Mg15Zn20 和 (Ca65Mg15Zn20)95Li5塊狀金屬玻璃之有效黏度範圍為1E7 − 1E8 Pa.s。至於(Ca65Mg15Zn20)95Al5 和 (Ca65Mg15Zn20)95Cu5塊狀金屬玻璃之有效黏度則較低,在1E7 Pa.s的範圍之內。其中,(Ca65Mg15Zn20)95Al5塊狀金屬玻璃具有最低的黏滯活化能(1.8 eV)及最大的形變量,以證明其具有最佳的可加工形變能力。
    為了將鈣基塊狀金屬玻璃應用於空氣電池,所以使用一簡單的三元Ca65Mg15Zn20塊狀金屬玻璃以清楚瞭解其在氫氧化鉀溶液中之電化學性質。藉由陽極極化量測分析可以知道,在高濃度的氫氧化鉀電解液中,Ca65Mg15Zn20塊狀金屬玻璃可觀察到最低腐蝕電流密度為63(1E6) A/cm2,以及相對應的最慢腐蝕速率為2 mm/year。較高的腐蝕電位意味著較易形成鈍化層而產生抗腐蝕的保護作用。對於這些特殊的腐蝕行為而言,鈍化層為非常重要的抗腐蝕關鍵。而表面分析的結果說明鈍化層主要是由氫氧化鈣,氫氧化鎂,氫氧化鋅所組成。經由放電測試提供了鈣基塊狀金屬玻璃應用於空氣電池的初步結果,發現其於稀KOH中表現較佳,與傳統鋅空電池不同。相信此研究除了拓展鈣基塊狀金屬玻璃之應用面外,也將使得塊狀金屬玻璃未來於空氣電池之應用開啟一扇門戶。


    Abstract I Abstract (in Chinese) II Acknowledgement III List of Tables IX List of Figures X -------------------------------------------------------- Chapter 1 Background and Motivation 1 1-1 An introduction to metallic glasses 1 1-1-1 Metallic glasses as new functional materials 1 1-1-2 A glance at non-ferrous metallic glasses 2 1-2 Purposes of this study 4 Chapter 2 Literature Review 6 2-1 History of metallic glasses 6 2-2-1 Non-ferrous bulk metallic glasses 9 2-1-1-1 Non-ferrous bulk metallic glasses with high Tg 9 2-1-1-2 Non-ferrous bulk metallic glasses with low Tg 12 2-2-2 Ferrous bulk metallic glasses 17 2-2 Characterization of metallic glasses 18 2-2-1 Mechanical properties and applications 18 2-2-2 Electrical properties 21 2-2-3 Electrochemical properties and applications 21 2-2-4 Thermo-mechanical properties and applications 23 2-2-5 Magnetic properties and applications 25 2-3 Methods to fabricate metallic glasses 26 2-4 Empirical rules for alloys with better GFA 27 2-5 Criteria for indicating the glass forming ability 28 2-6 Properties and requirements of an air-battery 31 Chapter 3 Experimental Procedures 34 3-1 Working flow chart 34 3-2 Sample preparation 35 3-2-1 Arc-melting technique of Au-based BMG 35 3-2-2 Copper mold casting of Au-based BMG 36 3-2-3 Copper mold pour-casting of Ca-based BMG 36 3-3 Analyses of structure and thermal properties 38 3-3-1 X-ray diffractometer (XRD) 38 3-3-2 Transmission electron microscope (TEM) 39 3-3-3 Differential thermal analyzer (DTA) 40 3-4 Analyses of electrochemical properties 42 3-4-1 Polarization analyzer (Tafel) 42 3-4-2 Cyclic voltammeter (CV) 44 3-4-3 Discharge tester 45 3-5 Analyses of thermal mechanical properties 46 3-5-1 Thermal mechanical analyzer (TMA) 46 3-6 Analyses of passive layer on the surface 48 3-6-1 Raman spectrometer (Raman) 48 3-6-2 Fourier-transform infrared spectrometer (FTIR) 49 Chapter 4 Exploration of Au-based BMG Systems 51 -Deformation capability of new quaternary Au-Sn-Cu-Si BMG systems- 51 4-1 Motivation 51 4-2 Experimental procedures 53 4-3 Results and Discussion 54 4-3-1 Structure examination 54 4-3-2 Thermal analyses 55 4-3-3 Thermal mechanical analyses 57 4-3-4 Estimation of viscosity 59 4-3-5 Observation of deformation capability 61 4-4 Summary 63 Chapter 5 Exploration of Ca-based BMG Systems 64 5-1 Deformation capability of Ca65Mg15Zn20 and Ca-Mg-Zn-(Li, Al, Cu) BMG systems 64 5-1-1 Motivation 64 5-1-2 Experimental procedures 66 5-1-3 Results and Discussion 67 5-1-3-1 Structure examination 67 5-1-3-2 Thermal analyses 68 5-1-3-3 Thermal mechanical analyses 70 5-1-3-4 Estimation of viscosity 77 5-1-3-5 Activation energy of viscous deformation 81 5-1-4 Summary 86 5-2 Corrosion behaviors and application of Ca65Mg15Zn20 BMG 88 5-2-1 Motivation 88 5-2-2 Experimental procedures 90 5-2-3 Results and Discussion 91 5-2-3-1 Structure examination and Thermal analyses 91 5-2-3-2 Electrochemistry analyses 92 (1) Polarization test (Tafel) 92 (2) Cyclic voltammetry (CV) 95 5-2-3-3 Schematic model of corrosion behaviors 96 5-2-3-4 Surface analyses 98 (1) XRD analysis 98 (2) SEM observation 99 (3) Raman analysis 101 (4) FTIR analysis 101 5-2-3-5 Application to an air battery 103 5-2-4 Summary 105 Chapter 6 Concluding Remarks and Prospects 106 6-1 Conclusions of this study 106 6-1-1 Au-based BMG 106 6-1-2 Ca65Mg15Zn20 BMG 107 6-1-3 Novel Ca-based BMG systems 109 6-2 Suggested future works 111 References 113 Publication List 120 Appendix-Other Research on Pb-free Solders 122

    References
    --------------------------------------------------------
    [1] Chen HS, Rep Prog Phys 43 353 1980
    [2] Kramer A, J Annln Phys 37 19 1934
    [3] Kramer A, Couch DE, Williams EK, J Res Natn Bur Stand 44 109 1950
    [4] Klement W, Willens R H and Duwez P Nature 187 869 1960
    [5] Duwes P, Trans Am Soc Metals 60 607 1967
    [6] Chen HS, Acta Mater 22 1505 1974
    [7] Kui HW, Greer AL, Turnbull D, Appl Phys Lett 45 615 1984
    [8] Inoue A, Ohtera K, Kita K, Masumoto T, Jpn J Appl. Phys 27 2248 1988
    [9] Inoue, Zhang T, Masumoto T, Mater Trans JIM 30 965 1989
    [10] Lin CY, Tien HY, Chin TS, Appl Phys Lett 86 162501 2005
    [11] Inoue A, Zhang T, Masumoto T, Mater Trans JIM 31 177 1990
    [12] Inoue A, Zhang W, Zhang T, Kurosaka K, Acta Mater 49 2645 2001
    [13] Inoue A, Nishiyama N, Matsuda T, Mater Trans JIM 37 181 1996
    [14] Schroers J, Johnson WL, Appl Phys Lett 84 3666 2004
    [15] Lin XH, Johnson WL, J Appl Phys 78 6514 1995
    [16] Tien HY, Lin CY, Chin TS, Intermetallics 14 1075 2006
    [17] Inoue A, Shen BL, Koshiba H, Kato H, Yavari AR, Acta Mater 52 1631 2004
    [18] Zhang B, Wang RJ, Zhao DQ, Pan MX, Wang WH, Phys Rev B 70 224208 2004
    [19] Amiya K, Inoue A, Mater Trans JIM 43 81 2002
    [20] Wang SH, Chin TS, Gold Bull. 45 3 2012
    [21] Loffler JF, Intermetallics 11 529 2003
    [22] Inoue A, Takeuchi A, Acta Mater 59 2243 2011
    [23] Takeuchi A, Inoue A, Mater Trans JIM 46 2817 2005
    [24] Park ES, Kim DH, J Mater Res 20 1465 2005
    [25] Inoue A, Kato A, Zhang T, Kim SG, Masumoto T, Mater Trans JIM 32 609 1991
    [26] Zheng Q, Cheng S, Strader JH, Ma E, Xu J, Scripta Mater 56 161 2007
    [27] Zhao YY, Ma E, Xu J, Scripta Mater 58 496 2008
    [28] Zheng Q, Ma H, Ma E, Xu J, Scripta Mater 55 541 2006
    [29] Jang JSC, Ciou JY, Hung TH, Huang JC, Du XH, Appl Phys Lett 92 011930 2008
    [30] Huang JC, Chu JP, Jang JSC, Intermetallics 17 973 2009
    [31] Li S, Wang RJ, Wang WH, J Non-Cryst Solids 352 3942 2006
    [32] Zhao K, Luo Q, Zhao DQ, Bai HY, Pan MX, Wang WH, J Non-Cryst Solids 355 1001 2009
    [33] Wang WH, Adv Mater 21 4524 2009
    [34] Inoue A, Zhang T, Masumoto T, Mater Trans JIM 30 965 1989
    [35] Kawamura Y, Nakamura T, Inoue A, Masomoto T, Mater Trans JIM 40 794 1999
    [36] Inoue A, Mater Trans JIM 36 866 1995
    [37] Schroers J, JOM 57 35 2005
    [38] Schroers J, Pham Q, Peker A, Paton N, Curtis RV, Scripta Mater 57 341 2007
    [39] Schroers J, Pham Q, Desai A, J Microelectromech Syst 16 240 2007
    [40] Schroers J, Nguyen T, O’Keeffe S, Desai A, Mater Sci Eng A 449-451 898 2007
    [41] Saotome Y, Itoh K, Zhang T, Inoue A, Scripta Mater 44 1541 2001
    [42] Lou HB, Wang XD, Xu F, Ding XQ, Cao QP, Hono K, Jiang JZ, Appl Phys Lett 99 051910 2011
    [43] Schroers J, Adv Mater 22 1566 2010
    [44] Bian Z, Zhang T, Kato H, Hasegawa M, Inoue A, J Mater Res 19 1068 2004
    [45] Nishiyama N, Inoue A, Mater Trans JIM 40 64 1999
    [46] Legg BA, Schroers J, Busch R, Acta Mater 55 1109 2007
    [47] Myung WN, Ryu SP, Hwang IS, Kim HG, Zhang T, Inoue A, Greer AL, Mater Sci Eng A 304-306 691 2001
    [48] Kumar G, Prades-Rodel S Q, Blatter A, Schroers J, Scripta Mater 65 585 2011
    [49] Morrison ML, Buchanan RA, Peker A, Peter WH, Horton JA, Liaw PK, Intermetallics 12 1177 2004
    [50] Inoue A, Wang XM, Zhang W, Rev Adv Mater Sci 18 1 2008
    [51] Ma C, Soejima H, Ishihara S, Amiya K, Nishiyama N, Inoue A, Mater Trans JIM 45 3223 2004
    [52] Inoue A, Zhang T, Kurosaka K, Zhang W, Mater Trans JIM 42 1800 2001
    [53] Zhang T, Inoue A, Mater Trans JIM 43 708 2002
    [54] Inoue A, Shen BL, Koshiba H, Kato H, Yavari AR, Nat Mater 2 6611 2003
    [55] Xu DH, Duan G, Johnson WL, Garland C. Acta Mater 52 3493 2004
    [56] Men H, Pang SJ, Zhang T, J Mater Res 21 958 2006
    [57] Zhu SL, Wang XM, Inoue A, Intermetallics 16 1031 2008
    [58] Zhang W, Zhang QS, Qin CL, Inoue A, J Mater Res 24 2935 2009
    [59] Oak JJ, Louzguine-Luzgin DV, Inoue A, Mater Sci Eng C 29 322 2009
    [60] Xu D, Duan G, Johnson WL, Phys Rev Lett 92 245504 2004
    [61] Wu XF, Suo ZY, Si Y, Meng LK, Qiu KQ, J Alloys Compd 452 268 2008
    [62] Qiang JB, Zhang W, Inoue A, Mater Sci Eng B 148 114 2008
    [63] Men H, Pang SJ, Zhang T, Mater Sci Eng A 449-451 538 2007
    [64] Lin HM, Wu JK, Wang CC, Lee PY, Mater Lett 62 2995 2008
    [65] Lu J, Zhang J, Shek C, J Phys: Conf Ser 144 012052 2009
    [66] Zhu SL, Wang XM, Qin FX, Inoue A, Mater Sci Eng A 459 233 2007
    [67] Homma Y, Sumiyama K, Suzuki K, Hihara T, Amano A, Matsuura M, Mater Trans JIM 36 815 1995
    [68] Zhang B, Zhao DQ, Pan MX, Wang RJ, Wang WH, Acta Mater 54 3025 2006
    [69] Bian Z, Inoue A, Mater Trans JIM 46 2541 2005
    [70] Bian Z, Inoue A, Mater Trans JIM 46 1857 2005
    [71] Bian Z, Inoue A, Mater Trans JIM 47 2599 2006
    [72] Schroers J, Lohwongwatana B, Johnson WL, Peker A, Appl Phys Lett 87 061912 2005
    [73] Tang TW, Chang YC, Huang JC, Gao Q, Jang JSC, Tsao CYA, Mater Chem Phys 116 569 2009
    [74] Zhang W, Guo H, Chen MW, Saotome Y, Qin CL, Inoue A, Scr Mater 61 744 2009
    [75] Schroers J, Lohwongwatana B, Johnson WL, Peker A, Mater Sci Eng A 449-451 235 2007
    [76] Kumar G, Tang HX, Schroers J, Nature 457 868 2009
    [77] Guo FQ, Poon SJ, Shiflet GJ, Appl Phys Lett 84 37 2004
    [78] Park ES, Kim DH, J Mater Res 19 685 2004
    [79] Amiya K, Inoue A, Mater Trans JIM 43 2578 2002
    [80] Guo FQ, Poon SJ, Shiflet GJ, J Appl Phys 97 013512 2004
    [81] Senkov ON, Miracle DB, Scott JM, Intermetallics 14 1055 2006
    [82] Park ES, Kim DH, Appl Phys Lett 86 201912 2005
    [83] Senkov ON, Scott JM, Miracle DB, Metall Mater Trans A 39A 1901 2008
    [84] Li JF, Zhao DQ, Zhang ML, Wang WH, Appl Phys Lett 93 171907 2008
    [85] Morrison ML, Buchanan RA, Senkov ON, Miracle DB, Liaw PK, Metall Mater Trans A 37A 1239 2006
    [86] Dahlman J, Senkov ON, Scott JM, Miracle DB, Mater Trans JIM 48 1850 2007
    [87] Wang YB, Xie XH, Li HF, Wang XL, Zhao MZ, Zhang EW, Bai YJ, Zheng YF, Qin L, Acta Biomater. 7 3196 2011
    [88] Li JF, Zhao DQ, Pan MX, Wang WH, J Non-Cryst Solids 357 236 2011
    [89] Inoue A, Gook JS, Mater Trans JIM 36 1282 1995
    [90] Inoue A, Gook JS, Mater Trans JIM 37 32 1996
    [91] Inoue A, Shinohara Y, Gook JS, Mater Trans JIM 36 1427 1985
    [92] Inoue A, Murakami A, Zhang T, Takeuchi A Mater Trans JIM 38 189 1997
    [93] Inoue A, Zhang T, Itoi T, Mater Trans JIM 38 359 1997
    [94] Inoue A, Koshiba M, Zhang T, A Makino Mater Trans JIM 38 577 1997
    [95] M Koshiba Inoue A, Makino A, J Appl Phys 85 5136 1999
    [96] Inoue A, Zhang T, Takeuchi A Appl Phys Lett 71 464 1997
    [97] Zhang W, Inoue A, Mater Trans JIM 40 78 1999
    [98] Inoue A, Zhang T, Zhang W, Takeuchi A, Mater Trans JIM 37 99 1996
    [99] Inoue A, Zhang T, Takeuchi A, Mater Trans JIM 37 1731 1996
    [100] Inoue A, Shen BL, Mater Trans JIM 43 2350 2002
    [101] Liu FJ, Yao KF, Ding HY, Intermetallics 19 1674 2011
    [102] Johnson WL, JOM 3 40 2002
    [103] Conner RD, Rosakis AJ, Johnson WL, Owen DM, Scr mater 37 1373 1997
    [104] Wang WH, Dong C, Shek CH, Mater Sci Eng R 44 45 2004
    [105] Telford M, Mater Today 3 35 2004
    [106] Wang K, Fujita T, Chen MW, Nieh TG, Okada H, Koyama K, Zhang W, Inoue A, Appl Phys Lett 91 154101 2007
    [107] Hashimoto K, Appl Surf Sci 257 8141 2011
    [108] Bush J, Ranganathan S, Sadhana 28 783 2003
    [109] Chang YC, Hung TH, Chen HM, Huang JC, Nieh TG, Lee CJ, Intermetallics 15 1303 2007
    [110] Chang YC, Huang JC, Cheng YT, Lee CJ, Du XH, Nieh TG, J Appl Phys 103 103521 2008
    [111] Fan GJ, Fecht HJ, Lavernia EJ, Appl Phys Lett 84 487 2004
    [112] Schroers J, Hodges TM, Kumar G, Raman H, Barnes AJ, Pham Q, Waniuk TA, Mater Today 14 14 2011
    [113] Sarac B, Kumar G, Hodges T, Ding S, Desai A, Schroers J, J Microelectromech Syst 20 28 2011
    [114] Kumar G, Desai A, Schroers J, Adv Mater 23 461 2011
    [115] Luborsky FE, Butterworths Monographs in Materials, London, UK, 1983
    [116] Inoue A, Mater Trans JIM 36 866 1995
    [117] Inoue A, Negishi T, Kimura HM, Zhang T, Yavari AR, Mater Trans JIM 39 318 1998
    [118] Masumoto T (ed), Material Science, Amorphous Alloys, Ohmu Tokyo p39 1983
    [119] Inoue A, Takeuchi A, Mater Trans JIM 43 1892 2002
    [120] Inoue A, Acta Mater 48 279 2000
    [121] Chen HS, Turnbull D, Acta Matall 17 1021 1969
    [122] Lu ZP, Liu CT, Phys Rev Lett 91 115505 2003
    [123] Linden D, Reddy TB, Handbook of batteries, third ed., McGraw-Hill, New York, 2002
    [124] International Tables for X-Ray Crystallography, Birmingham, England, 1968
    [125] http://en.wikipedia.org/wiki/File:Scheme_TEM_en.svg
    [126] Thermal analyses training report, PerkinElmer, Taiwan, 2006
    [127] http://www.lkt.uni-erlangen.de/publikationen/buecher/Leseprobe_ptak-e.pdf
    [128] http://www.horiba.com/cn/scientific/products/raman-spectroscopy/raman-systems/research-raman/details/labram-hr-130/
    [129] http://patarnott.com/atms749/powerpoint/FTIRSpectrometer.ppt
    [130] Jang JSC, Chang CF, Huang YC, Chiang WJ, Nieh TG, Liu CT, Intermetallics 17 200 2009
    [131] Chen YC, Chu JP, Jang JSC, Wu CW, Mater Sci Eng A (in press)
    [132] Lee KS, Jun HJ, Pauly S, Bartusch B, Chang YW, Eckert J, Intermetallics 17 65 2009
    [133] Jones DA, Principles and prevention of corrosion, second ed., Prentice Hall, NJ, 1996
    [134] Uhlig HH, Revie RW, Corrosion and corrosion control, third ed., John Wiley & Sons, Singapore, 1991
    [135] Dawson P, Hadfield CD, Wilkinson GR, J Phys Chem Solids 34 1217 1973
    [136] Legodi MA, Waal D, Potgieter JH, Potgieter SS, Miner Eng 14 1107 2001
    [137] Hao L, Zhu C, Mo X, Jiang W, Hu Y, Zhu Y, Chen Z, Inorg Chem Commun 6 229 2003
    [138] Singh SC, J Nanopart Res 13 4143 2011
    [139] Pourbaix M, Oxford, pp141, 150, 409, 1996
    [140] Lan CJ, Chin TS, Lin PH, Perng TP, J New Mat Electrochem Syst 9 27 2006
    [141] Lan CJ, Lee CY, Chin TS Electrochim Acta 52 5407 2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE