研究生: |
蕭皓中 |
---|---|
論文名稱: |
以熱管均溫之富氫重組產物中一氧化碳移除研究 Using a Heat Pipe to Improve Temperature Uniformity of CO Preferential Oxidation for Hydrogen-Rich Reformate |
指導教授: | 王訓忠 |
口試委員: |
王訓忠
呂志興 許文震 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 一氧化碳移除反應 、單階段反應 、雙階段反應 、被動控溫 、主動控溫 |
外文關鍵詞: | CO preferential oxidation, 1-stage, 2-stage, split ratio |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對直管填充觸媒床式一氧化碳選擇性氧化反應器進行研究。一般而言,反應氣體進入反應器後,於入口處將產生劇烈反應釋放大量反應熱,造成局部高溫,此現象將造成一氧化碳轉化效果變差。本研究分別採用被動及主動控溫方法進行實驗。在被動控溫方法中,當反應器管壁採用紅銅材質,且在反應器內部中心軸位置埋置熱管,可將入口高溫區熱量有效帶往下游區,除可有效降低入口溫度,並可提升下游區域溫度,增進反應效率。針對不同反應物流率所做測試,顯示此方法對單階段反應器的一氧化碳轉化有顯著改善效果,但對雙階段反應器則有些許負面效應。當採用主動控溫方法將環溫控制於99 ℃時,在空氣供給量足夠的前提下(本實驗在空氣供給量為[O2]/[CO]=1.0、1.25時),反應器內部埋置熱管能顯著改善整體觸媒均溫性,並且提升一氧化碳移除效果。
[1] Narusawa K, Hayashida M, Kamiya Y, Roppongi H, Kurashima D, Wakabayashi K. Deterioration in fuel cell performance resulting from hydrogen fuel containing impurities: poisoning effects by CO, CH4, HCHO and HCOOH. JSAE Review 2003;24:41-46.
[2] Bhatia KK, Wang CY, Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed. Electrochimica Acta 2004;49:2333-41.
[3] Zhou SL, Yuan ZS, Wang SD. Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications. Int J Hydrogen Energy 2006;31:924-33.
[4] Oh SH, Sinkevich RM. Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation. J Catal 1993;142:254-62.
[5] Huang CY, Chen YY, Su CC, Hsu CF. The cleanup of CO in hydrogen for PEMFC applications using Pt, Ru, Co, and Fe in PROX reaction. J. Power Sources 2007;174:294-301.
[6] Manasilp A, Gulari E. Selective CO oxidation over Pt/alumina catalysts for fuel cell applications. Appl Catal B: Environ 2002;37:17-25.
[7] Chin SY, Alexeev OS, Amiridis MD. Preferential oxidation of CO under excess H2 conditions over Ru catalysts. Appl Catal A: Gen 2005;286:157-66.
[8] Tanaka KI, He H, Shou M, Shi XY. Mechanism of highly selective low temperature PROX reaction of CO in H2: oxidation of CO via HCOO with OH. Catal Today 2011;175:467-70.
[9] Korotkikh O, Farrauto R. Selective catalytic oxidation of CO in H2: fuel cell applications. Catal Today 2000;62:249-54.
[10] Cipiti F, Recupero V. Design of a CO preferential oxidation reactor for PEFC systems : a modelling approach. Chem Eng J 2009;146:128-35.
[11] Cipiti F, Pino L, Vita A, Lagana M, Recupero V. Model-based analysis of reactor geometrical configuration on CO preferential oxidation performance. Int J Hydrogen Energy 2009;34:4463-74.
[12] Igarashi H, Uchida H, Suzuki M, Sasaki Y, Watanabe M. Removal of carbon monoxide from hydrogen-rich fuels by selective oxidation over platinum catalyst supported on zeolite. Appl Catal A: Gen 1997;159:159-69.
[13] Dudfield CD, Chen R, Adcock PL. A carbon monoxide PROX reactor for PEM fuel cell automotive application. Int J Hydrogen Energy 2001;26:763-75.
[14] Ahluwalia RK, Zhang Q, Chmielewski DJ, Lauzze KC, Inbody MA. Performance of CO preferential oxidation reactor with noble-metal catalyst coated on ceramic monolith for on-board fuel processing applications. Catal Today 2005;99:271-83.
[15] Srinivas S, Gulari E. Preferential CO oxidation in a two-stage packed-bed reactor: optimization of oxygen split ratio and evaluation of system robustness. Catal Communication 2006;7:819-26.
[16] Luengnaruemitchai A, Naknam P, Wongkasemjit S. Investigation of double-stage preferential CO oxidation reactor over bimetallic Au-Pt supported on A-zeolite catalyst. Ind Eng Chem Res 2008;47:8160-5.
[17 http://pro.tanaka.co.jp/english/products/group_f/f_5.html