簡易檢索 / 詳目顯示

研究生: 莊詠程
Juang, Yung-Cheng
論文名稱: 覆晶球柵陣列構裝於構裝製程後之熱機械行為分析與可靠度研究
On the Study of Process induced Thermal -mechanical Behaviors and Reliability for a Flip-Chip Ball Grid Array Packaging
指導教授: 陳文華
Chen, Wen-Hwa
鄭仙志
Cheng, Hsien-Chie
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 123
中文關鍵詞: 覆晶球柵陣列構裝銅/低介電材料層熱機械行為翹曲加速熱循環有限單元全域/局部分析法疲勞壽命
外文關鍵詞: flip-chip ball grid array package, Cu/low-k layer, thermal- mechanical behavior, warpage, accelerated thermal cycling, global/local finite element approach, fatigue life
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今電子構裝技術發展迅速,為了達到輕、薄、短、小及高傳輸速度、I/O接腳數多等需求,覆晶球柵陣列(flip-chip ball grid array, FC-BGA)構裝因應而生。而此一技術,在構裝製程以及可靠度評估中仍會出現許多問題,例如構裝在製程完畢後之翹曲行為,及其銲錫凸塊在歷經加速熱循環後產生的低週期熱疲勞破壞現象等,皆值得吾人深入探究。
    本論文首先利用有限單元分析軟體ANSYS®建立一精確之三維有限單元分析模型,配合失效/再生單元模擬技術以及有限單元全域/局部分析方法,針對內含銅/低介電材料層(Cu/Low-k)晶片之覆晶球柵陣列構裝於構裝製程後之熱機械行為進行模擬分析,包含晶片、銲錫凸塊、與不同材料介面間之應變與應力及整體構裝之翹曲變形等,並利用自動顯像檢測系統(robotic vision systems inspection, RVSI)實驗及太曼-格林干涉儀(Twyman-Green interferometry)實驗驗證其正確性。本論文接著亦探討一覆晶球柵陣列構裝於加速熱循環(accelerated thermal cycling )測試下,不同材料組成銲錫凸塊之彈性、塑性及潛變行為,並進而預估其疲勞壽命。最後,對於相關製程、材料及幾何參數等,於上述構裝熱機械行為影響,本論文亦進行了參數化分析。
    本論文獲得之成果,不但有助於內含Cu/Low-k晶片之覆晶球柵陣列構裝於構裝製程後之熱機械行為及加速熱循環測試下可靠度之瞭解,藉由參數分析,並可提供構裝業者進行構裝設計之參考。


    Nowadays, electronic packages are developed very fast, therefore the flip-chip ball grid array package is devised for the purpose of achieving the requirements for something which is light, thin, short, small, high speed and high input/output pin counts. However the flip-chip ball grid array package, as a new technology, still has many technical challenges remaining in concern, such as the warpage behavior after the packaging process, and the low cycling thermal fatigue failure which is produced by the solder bump after the accelerated thermal cycling test. These features of the flip-chip ball grid array package in this research work worth further study.
    Using the element death and birth technology and the finite element global/local analysis model, this study is first to establish an accurate three-dimensional finite element thermal-mechanical analysis model by the ANSYS finite element analysis software.Continuously,the integrated process-dependent analysis simulates for the thermal-mechanical properties which are produced from the chip with Cu/low-k layer of flip- chip ball grid array package after packaging process, including the warpage of the packaging and the strain/stress of the chip, solder bump and the different interfaces of surrounding materials. The validity of the thermal-mechanical analysis model is verified by robotic vision systems inspection (RVSI) and the Twyman-Green interferometry experiments for warpage measurement. In addition, this research explores the elasticity, plasticity and creep behaviors of the solder bump made by different materials, and predicts the fatigue life further when the flip-chip ball grid array package stays in the condition of the accelerated thermal cycling test. At last, this study investigates the effects of related process, materials and geometric parameters on the thermal-mechanical behaviors of this packaging through parametric analysis.
    The achievement of this study can help us to understand the thermal-mechanical behaviors of the chip with Cu/low-k layer of flip-chip ball grid array package and the reliability under the accelerated thermal cycling test, also offer an initial design stage for electronic packaging industry.

    摘要 目錄 表目錄 圖目錄 第一章、導論 第二章、內含Cu/Low-k晶片之覆晶球柵陣列構裝 2.1 構裝結構 2.2 構裝製程 第三章、翹曲分析 3.1 等效材料常數計算 3.2 自動顯像檢測實驗 3.3 太曼-格林干涉儀實驗 3.4 失效/再生單元模擬技術 第四章、可靠度評估 4.1 加速熱循環測試 4.2 銲錫凸塊材料組成律 4.3 疲勞壽命預測 第五章、三維有限單元分析模型 5.1 構裝製程熱機械行為分析 5.2 可靠度分析 第六章、結果與討論 6.1 構裝製程熱機械行為分析 6.1.1自動顯像檢測實驗驗證 6.1.2太曼-格林干涉儀實驗驗證 6.1.3有限單元全域/局部分析方法驗證 6.1.4構裝製程之翹曲分析 6.1.5參數分析 6.1.5.1楊氏模數影響 6.1.5.2熱膨脹係數影響 6.1.5.3底膠玻璃轉換溫度影響 6.1.5.4元件厚度影響 6.1.6殘餘應變/應力分析 6.2 共熔錫鉛合金型式覆晶球柵陣列構裝之可靠度分析 6.2.1熱機械行為分析 6.2.2參數化分析 6.2.2.1楊氏模數影響 6.2.2.2熱膨脹係數影響 6.2.2.3不同介電材料影響 6.3 高鉛錫鉛合金型式覆晶球柵陣列構裝之可靠度分析 6.3.1太曼-格林干涉儀實驗驗證 6.3.2熱機械行為分析 6.3.3參數分析 6.3.3.1含錫球之影響 6.3.3.2材料常數影響 6.3.3.3銅墊片與溢膠影響 6.3.3.4元件厚度影響 6.3.3.5印刷電路板影響 第七章、結論與未來展望 參考文獻 附表 附圖

    1.Akay, H. U.; Liu, Y.; Ras, M. “Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages”, Journal of Electronic Packaging, vol. 125, pp.347-353, 2003.
    2.Chang, K. C.; Li, Y.; Lin, C. Y.; Lii, M. J. “Design Guidance for the Mechanical Reliability of Low-K Flip Chip BGA Package”, International Microelectronics and Packaging Society Conference, Kaohsiung, Taiwan, 2004.
    3.Chen, K. M.; Tasi, H. Y.; Lai, J. Y. “Comparing the Impacts of the Capillary and the Molded Underfill Process on the Reliability of the Flip Chip BGA”, IEEE Trans. Comp., Packag., Manufact. Technol., vol.31, pp.586-591, 2008.
    4.Chen, S.; Tasi, C. Z.; Kao, N.; Wu, E. “Mechanical Behavior of Flip Chip Packages under Thermal Loading”, Electronic Components and Technology Conference, Proceedings. 55th., pp.1677-1682, 2005.
    5.Cheng, H. C.; Yu, C. Y.; Chen, W. H. “An Effective Thermal-Mechanical Modeling Methodology for Large-Scale Area Array Typed Packages”, Computer Modeling in Engineering and Sciences, vol.7, pp.1-17, 2005.
    6.Cheng, Z.; Chen, L.; Wang, G. Z.; Xie, X. M.; Zhang, Q. “The Effects of Underfill and Its Material Models on Thermomechanical Behaviors of Flip Chip Package”, Electronic Materials and Packaging Conference, pp.232-239, 2000.
    7.Chiang, K. N.; Yuan, C. A. “An Overview of Solder Bump Shape Prediction Algorithms with Validations”, IEEE Trans. Comp., Packag., Manufact. Technol., vol.24 , pp.158-162, 2001.
    8.Chiu, C. C.; Wu, C. J.; Peng, C. T.; Chiang, K. N.; Ku, T.; Cheng, K. “Failure Life Prediction and Factorial Design of Lead-Free Flip Chip Package”, Journal of the Chinese Institute of Engineers, vol.30, pp.481-490, 2007.
    9.Chong, D. Y. R.; Goh, K. Y.; Kapo, R.; Sun, A. Y. S. “Reliability Analyses for new Improved High Performance Flip Chip BGA Package”, Electronics Packaging Technology Conference, Proceedings. 5th., pp.695-700, 2003.
    10.Du, Y.; Wang, G.; Merrill, C.; Ho, P. S. “Thermal Stress and Debonding in Cu/Low-k Damascene Line Structures”, Electronic Components and Technology Conference, Proceedings. 52nd., pp.859-864, 2002.
    11.Dutta, I.; Gopi, A.; Mars, C. “Underfill Constraint Effects during Thermomechanical Cycling of Flip-Chip Solder Joints”, Journal of Electronic Materials, vol.31, pp.253-264, 2002.
    12.Engelmaier, W. “Fatigue Life of Leadless Chip Carriet Solder Joints during Power Cycling”, IEEE Trans. Comp., Packag., Manufact. Technol., vol.6 , pp.232-237, 1983.
    13.Kao, N.; Lai, J. Y.; Wang, M. Z.; Wand, Y. P.; Hsiao, C. S. “Molded Flip Chip BGA Characterization”, Electronics Packaging Technology Conference, Proceedings. 6 th., pp.109-114, 2004.
    14.Kim, P.; Rhee, S. “Three-Dimensional Inspection of Ball Grid Array using Laser Vision System”, IEEE Trans. Comp., Packag., Manufact. Technol., part C, vol.22, pp.151-155, 1999.
    15.Lau, J. H. “Ball Grid Array Technology”, McGraw-Hill, Inc, 1995.
    16.Lau, J. H.; Pao, Y. H. “Solder Joint Reliability of BGA , CSP , Flip Chip, and Fine Pitch SMT Assemblies”, McGraw-Hill, Inc, 1997.
    17.Lee, Y. C.; Chen, W. T. “Manufacturing Challenges in Electronic Packaging”, London, Chapman & Hall, 1998.
    18.Li, Y. “Accurate Predictions of Flip Chip BGA Warpage”, Electronic Components and Technology Conference, Proceedings. 53rd., pp.549-553, 2003.
    19.Liang, D. “Warpage Study of Glob Top Cavity-up EPBGA Packages”, Electronic Components and Technology Conference, Proceedings. 46th., pp.694-701, 1996.
    20.Lin, X. W.; Pramanik, D.“Future Interconnect Technologies and Copper Metallization”, Solid State Technology , pp. 63-79, 1998.
    21.Mats, H.; Baba, S.;Tomi, Y.; Wata, M.; Haya, E.; Take, Y. “Thermally Enhanced Flip-chip BGA with Organic Substrate”, Electronic Components and Technology Conference , Proceedings. 48th., pp.685-691, 1998.
    22.Oota, K.; Shigeno, K. “Development of Molding Compounds for BGA”, Electronic Components and Technology Conference, Proceedings. 45 th., pp.78-85, 1995.
    23.Pang, J. H. L.; Chong, D. Y. R.; Low, T. H. “Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability”, IEEE Trans. Comp., Packag., Manufact. Technol., vol.24, pp.705-712, 2001.
    24.Tasi, S.; Hahn H. “Introduction to Composite Materials”, Technomic Publishing, 1980.
    25.Taso, P. H.; Huang, C.; Lii, M. J.; Su, B.; Tsai, N. S. “Underfill Characterization for Low-k Dielectric/Cu Interconnect IC Flip-chip Package Reliability” , Electronic Components and Technology Conference, Proceedings. 55 th., vol.1, pp.767-769, 2004.
    26.Wang, J.; Qian, Z.; Liu, S. “Process Induced Stresses of a Flip-Chip Packaging by Sequential Processing Modeling Technique”, Journal of Electronic Packaging, vol.120, pp.309-313, 1998 .
    27.Zhang, X. W.; Lee S. W. R. “Effect of Temperature Profile on the Life Prediction of PBGA Solder Joints under Thermal Cycling” , Key Engineer Materials, vol. 145-149, pp.1133-1138, 1998.
    28.Zhang, Z.; Wong, C. P. “Recent Advance in Flip-Chip Underfill : Materials, Process, and Reliability”, IEEE Trans. Comp., Packag., Manufact. Technol., part B, vol.27, pp.515-524, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE