簡易檢索 / 詳目顯示

研究生: 林沛妤
論文名稱: The wettability of silicon nanowires and their applications in microfluidics
矽奈米線親疏水性之研究及其在微流道之應用
指導教授: 嚴大任
Yen, Ta-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 70
中文關鍵詞: 系奈米線超親水性
外文關鍵詞: silicon nanowires, superhydrophilic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Silicon is the significant material in many fields including semiconductor, optoelectronic, bio-sensor and energy generation industries. The reduce of size to micro/nano scale is a prevalent topic in different materials, especially silicon. We utilize the one-dimension silicon nanowires in the fabrication of electroless metal deposition (EMD) method that well-aligned and large area to produce the drastic wetting properties, such as superhydrophilicity and superhydrophobicity.
    The superhydrophilicity of silicon nanowires can be applied to decrease the phenomenon of bubble clogging in the microchannels due to the special wetting behavior. However the experiment is not very successful, the different liquid flow can demonstrate the more hydrophilic property in the microchannel with silicon nanowires than the ordinary one. The result of the experiments can provide a solution in the fields of microfluidic and portable power supply systems to reduce the energy consuming in pumping liquid flow.


    系奈米線的超親水性質,可應用於微流道等微機電系統

    ABSTRACT I TABLE OF CONTENTS II CHAPTER 1 INTRODUCTION 1 1.1 SILICON NANOWIRES 1 1.2 WETTABILITY 2 1.3 MOTIVATION 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 WET ETCHING PROCESS OF SILICON NANOWIRES 4 2.1-1 Electroless metal deposition method 4 2-2 CONTACT ANGLE 8 2-2-1 Young’s equation 8 2-2-2 Wenzel model 10 2.2-3 Cassie-Baxter model 12 2.2-4 The transition between Wenzel and Cassie-Baxter model 15 2-2-5 Superhydrophobic 21 2-2-6 Superhydrophilic 22 CHAPTER 3 EXPERIMENTAL PROCEDURES 23 3.1 CONTACT ANGLE MEASUREMENT 23 3.1-1 Preparation of samples 23 3.1-2 Measure the contact angles 25 3.2 CHIPS DESIGN 26 3.2-1 Determine the shape of microchannel 26 3.2-2 Determine the experimental process 28 3.1-3 Determine the experimental factors 30 3.3 THE STEPS OF FABRICATION PROCESS 30 3.3-1 superhydrophilic microchannel 31 3.3-2 flat surface of microchannel 37 3-4 DATA COLLECTION 45 3-4-1 Roughness measurement 45 3-4-2 Morphology of microchannels 46 3-4-3 Fluid in microchannels 47 CHAPTER 4 EXPERIMENTAL RESULTS 49 3.1 CONTACT ANGLE ON DIFFERENT SURFACE 49 4.2 THE MORPHOLOGY OF MICROCHANNEL 58 4.3 THE LIQUID FLOW IN MICROCHANNELS 63 CHAPTER 5 CONCLUSION 65 REFERENCE 66

    [1] G. T. A. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, New York 2000.
    [2] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding,G. C.Xiong, L. P. You, J.Xu, S.Q. Feng, Phys. Rev. B 1999, 59, R2498.
    [3] M. Becker, V. Sivakov, G. Andra, R. Geiger, J. Schreiber, S. Hoffmann,
    J. Michler, A. P. Milenin, P. Werner, S. H. Christiansen, Nano Lett. 2007, 7, 75.
    [4] a) O. Boyraz, B. Jalali, Opt. Express 2004, 12, 5269. b) H. S. Rong,
    R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, Nature 2005, 433, 725.
    [5] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, Nature 2007, 449, 885.
    [6] Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Science 2001, 293,
    1289.
    [7] Y. Qiu, K. Park, Adv. Drug Delivery Rev. 2001, 53, 321.
    [8] I. Roy, M. V. S. Rao, M. N. Gupta, Biotechnol. Appl. Biochem. 2003, 37, 9.
    [9] T. J. Yen, X. Zhang, G. Q. Lu, Y. Wang, Appl. Phys. Lett. 2003, 83, 4056.
    [10] T. Cubaud, C. M. Ho, Phys. Fluids 2004, 16, 4575
    [11] C. Y. Lee, S. Y. Lee, Int. J. Multiph. Flow 2008, 34, 706
    [12] Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
    [13] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, Chem. Phys. Lett. 2000, 323, 224.
    [14] Y. Wang, V. Schmidt, S. Senz, U. Goぴ sele, Nat. Nanotechnol. 2006, 1, 186.
    [15] S. P. Ge, K. L. Jiang, X. X. Lu, Y. F. Chen, R. M. Wang, S. S. Fan, Adv. Mater. 2005, 17, 56.
    [16] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 2003, 15, 635.
    [17] J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 2000,287, 1471.
    [18] D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, S. Q. Feng, Solid State Commun. 1998, 105, 403.
    [19] K.Q. Peng, J. J. Hu, Y. J. Yen, Y. Wu, H. Fang, Y. Xiu, S. T. Lee, J. Zhu, Adv. Funct. Mater. 2006, 16, 387.
    [20] K.Q. Peng, Y. Wu, H. Fang, Y. Zhong,, Y. Xu, J. Zhu, Angew. Chem. Int. Ed. 2005, 44, 2737
    [21] C. Y. Chen, C. S. Wu, C. J. Chou, T. J. Yen, Adv. Mater. 2008, 20, 3811
    [22] T. Young, Phil. Trans. R. Soc. Lond. 1805, 95, 65
    [23] http://en.wikipedia.org/wiki/Contact_angle
    [24] D. Quere, Rep. Prog. Phys. 2005, 68, 2495
    [25] R. N. Wenzel, Ind. Eng. Chem. 1936, 28, 988
    [26] A. B. D. Cassie, S. Baxter, Trans. Faraday Soc. 1944, 40, 546
    [27] C. Ishino. K. Okumura, d. Quere, Europhys. Lett. 2004, 68, 419
    [28] E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C. D. W. Wilkinson, M. O. Riehle, Nano Lett. 2005, 5, 2098
    [29] Y. J. Sheng, S. Jaing, H. K. Tsao, J. Chem. Phys. 2007, 127, 234704-1
    [30] Y. Xiu, L. Zhu, D. W. Hess, C. P. Wong, Nano Lett. 2007, 7, 3388
    [31] X. J. Feng, L. Jiang, Adv. Mater. 2006, 18, 3063
    [32] J. Bio, C. Tordeux, D. Quere, Europhys. Lett. 2001, 55, 214
    [33] W. Barthlott, C. Neinhuis, Planta 1997, 202, 1
    [34] C. Neinhuis, W. Barthlott, Ann. Bot. 1997, 79, 667
    [35] C. Neinhuis, K. Koch, W. Barthlott, Planta 2001, 213, 427
    [36] B. Bhushan, Y. C. Jung, Nanotechnology 2006, 17, 2758
    [37] C. Cottin-Bizonne, J. L. Barrat, L. Bocquet, E. Charlaix, Nat. Mater. 2003, 2, 237
    [38] S. T. Wang, L. Feng, L. Jiang, Adv. Mater. 2006, 18, 767
    [39] C. Dorrer, J. Ruhe, Langmuir 2006, 22, 7652
    [40] C. Dorrer, J. Ruhe, Adv. Mater 2008, 20, 159
    [41] F. C. Cebeci, Z. Z. Wu, L. Zhai, R. E. Cohen, M. F. Rubner, Langmuir 2006, 22, 2856
    [42] Self-cleaning surfaces ─ virtual realities, nature materials, Vol.2 2003
    [43] X. Liu, J. He, J. Colloid Interface Sci. 2007, 314, 341
    [44] X. Liu, Z. Du, J. He, Chem. Phys. Chem. 2008, 9, 305
    [45] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Waranabe, Nature 1997, 388, 431
    [46] K. Guan, B. Lu, Y. Yin, Surf. Coatings Technol. 2003, 173, 219
    [47] H. Irie, W. Washizuka, N. Yoshino, K. Hashimoto, Chem. Comm. 2003, 11, 1298
    [48] A. Hattori, T. Kawahara, T. Uemoto, F. Suzuki, H. Tada, S. Ito, J. Colloid Interface Sci. 2000, 232, 410
    [49] R. D. Sun, A. Nakajima, A. Fujishima, T. Waranabe, K. Hashimoto, J. Phys. Chem. B 2001, 105, 1984
    [50] M. Machida, K. Norimoto, T. Waranabe, K. Hashimoto, A. Fujishima, J. Mater. Sci. 1999, 24, 2569
    [51] M. Miyauchi, A. Nakajima, K. Hashimoto, T. Waranabe, Adv. Mater. 2000, 12, 1923
    [52] Z. Z. Gu, A. Fujishima, O. Sato, Angew. Chem., Int. Ed. 2002, 41, 2068
    [53] X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, A. Fujishima, Chem. Mater. 2005, 17, 696
    [54] J. L. Zhang, X. Y. Lu, W. H. Huang, Y. C. Han, Macromol. Rapid Commun. 2005, 26, 477
    [55] T. Ogawa, N. Murata, S. Yamazaki, J. Sol-Gel Sci. Technol. 2003, 27, 237
    [56] Y. G. Jiang. Z. Q. Wang, X. Yu, F. Shi, H. P. Xu, Langmuir 2005, 21, 1986
    [57] K. Tadanaga, J. Morinaga, T. Minami, J. Sol-Gel Sci. Technol. 2000, 19, 211
    [58] N. J. Shirtcliffe, G. Mchale, M. I. Newton, C. C. Perry, P. Roach, Chem. Commun. 2005, 25, 3135
    [59] T. L. Sun, G. J. Wang, L. Feng, B. Q. Liu, Y. M. Ma, L. Jiang, D. B. Zhu, Angew. Chem., Int. Ed. 2004, 43, 357
    [60] H. Liu, L. Feng, J. Zhai, L. Jiang, D. B. Zhu, Langmuir 2004, 20, 5659
    [61] K. C. Song, J. K. Park, H. U. Kang, S. H. Kim, J. Sol-Gel Sci. Technol. 2003, 27, 53
    [62] G. Mchale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, M. I. Newton, Phys. Rev. Lett. 2004, 93, 036102/1
    [63] http://www.ee.byu.edu/cleanroom/KOH.phtml

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE