研究生: |
胡淳育 Hu, Chun-Yu |
---|---|
論文名稱: |
發展牛血清蛋白包覆磁性奈米粒子作為藥物傳遞載體 於光動力治療之應用 Development of Albumin Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles in Photodynamic Therapy |
指導教授: |
黃郁棻
Huang, Yu-Fen |
口試委員: |
黃志清
姜文軒 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 110 |
中文關鍵詞: | 牛血清蛋白 、中空孔洞磁性奈米粒子 、光敏劑 |
外文關鍵詞: | bovine serum albumin, porous hollow Fe3O4 nanoparticles, photosensitizer |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光動力治療 (Photodynamic therapy, PDT),是一種結合光敏劑(photosensitizer, PS)、光及氧之非侵入式治療且已廣泛應用於臨床癌症應用上。由於現階段的光敏劑大多為疏水性結構,在生物體應用上受限於溶解性不佳等問題而影響其治療之效率。故本研究利用具有三維結構與水溶性佳等特性之牛血清蛋白,與疏水性的光敏劑 (Protoporphyrin IX, PpIX)間,具有良好親和性以改善溶解性等問題,再者以微乳化合成方式包覆疏水性中空孔洞磁性鐵奈米粒子,以開發新型診斷治療制劑。動態光散射分析儀 (Dynamic light scattering, DLS)與穿透式電子顯微鏡 (Transmission electron microscope, TEM)鑑定結果顯示,此奈米複合體(BSA:PpIX:PHNPs)為團簇結構,其平均水合半徑為152.9 ± 29.0 nm。從吸收與螢光光譜鑑定結果證實此載體可有效裝載PpIX,並可長時間穩定於複雜生理緩衝環境。透過老鼠前列腺癌細胞之存活率分析顯示,以632 nm波長Xe燈照射30分鐘條件下,載體上之光敏劑可有效生成單態氧與自由基,達到毒殺癌細胞之目的;未照光組別無顯著的細胞毒性產生。此複合材料在本體系中進一步扮演磁共振造影對比劑的顯影功能,利用表面的血清蛋白與水分子良好的交互作用,可提升其影像對比度。
在生物體應用上,許多文獻記載奈米載體上修飾聚乙二醇分子可有效降低奈米載體與血清的交互作用、減少被內皮網狀系統的巨噬細胞所吞噬及延長於血液循環中的時間等,提升其治療之效率。故本研究利用Methoxy PEG succinimidyl carboxymethyl ester上的NHS-Ester與血清蛋白上的一級胺反應形成具有PEG修飾之血清蛋白。此血清蛋白亦可與PpIX間具有良好親和性,透過微乳化方式開發一聚乙二醇修飾之奈米藥物載體。研究結果證實載體修飾PEG的比例不同,可調控巨噬細胞吞噬之作用。
光動力治療也可搭配化學性療法以提升其治療效率。本研究可開發雙藥物於單一載體作為化學-光動力之結合治療,利用血清蛋白與中空孔洞奈米粒子,在微乳化方式,將化學治療藥物Dox及光敏劑PpIX有效裝載 (BSA:Dox:PpIX:PHNPs)。從光譜鑑定顯示BSA:Dox:PpIX:PHNPs具有良好的藥物裝載率(Dox: 82%及PpIX:98%),再者細胞存活率分析證實結合化學-光動力治療可成功改善單藥物載體之治療效率。
本研究之奈米複合體系統透過簡單而且快速的合成方式,成功裝載疏水性光感物質PpIX,改善其生物體內溶解性不佳等問題,再者可利用PEG修飾或者搭配化學性藥物的結合治療下,提升生物體應用及治療之效率。
Photodynamic therapy (PDT) requires combination of a photosensitizer (PS), light and oxygen; it is a non-invasive therapeutic modality which is widely used in cancer clinical trial. Most existing PSs are hydrophobic in nature. PDT’s oxidative damage is significantly reduced by the low efficiency of reactive oxygen species (ROS) production. Owing to the high binding affinity of serum albumin toward Protoporphyrin IX (PpIX), bovine serum albumin (BSA) was applied as a carrier for PDT drug in the current study.The high aqueous solubility of BSA makes it an ideal candidate to stabilize hydrophobic porous hollow Fe3O4 nanoparticles (PHNPs). This process is done through one step oil-in-water emulsion under optimal ultrasonication condition.
The morphology and particle size of the BSA:PpIX:PHNPs were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The resultant nanocluster demonstrated a narrow size distribution with a mean hydrodynamic diameter of 152.9 ± 29.0 nm. Spectroscopic measurement confirmed high PpIX-loading efficiency, which was biocompatible and stable in various buffers. Furthermore, in vitro cytotoxicity of BSA:PpIX:PHNPs was tested in Tramp C1 cells via MTT assay and significant improvement in therapeutic efficacy was achieved with 30 min-red laser (632 nm) irradiation. This result was also consistent with an increase of ROS generation in cancer cells and was demonstrated using flow cytometry. In addition, BSA:PpIX:PHNPs exhibit high transverse relaxivity in MRI as the contrast agents (CAs).PEGylated nanoparticles have been proposed as enabling evasion by RAW 264.7 cells and reducing blood plasma protein adsorption. In this work, methoxy PEG succinimidyl carboxymethyl ester was covalently attached to BSA and followed by NHS ester-amine reaction in phosphate buffer (pH 8). PEG-BSA and hydrophobic porous hollow Fe3O4 nanoparticles (PHNPs) were stabilized through one step oil-in-water emulsion under optimal ultrasonication condition. Our results demonstrate that PEGylation of BSA:PpIX:PHNPs can modulate cellular uptake by RAW 264.7 cells.BSA:PpIX:PHNPs have shown great potential both in drug delivery and photodynamic therapy.Herein, we developed a doxorubicin (Dox)-loaded BSA:PpIX:PHNPs to facilitate combined chemotherapy and photodynamic therapy in one system. BSA:Dox:PpIX:PHNPs, show high loading efficiency of Dox and PpIX. Comparing in vitro cytotoxicity assays of BSA:Dox:PHNPs & BSA:PpIX:PHNPs with BSA:Dox:PpIX:PHNPs, we demonstrated that BSA:Dox:PpIX:PHNPs have higher therapeutic efficacy during photodynamic therapy. The ability of BSA:Dox:PpIX:PHNPs to combine local specific chemotherapy with external photodynamic therapy significantly improves therapeutic efficacy of cancer treatment.Our findings suggest that albumin coated magnetic nanoparticles exhibit great potential as a diagnostic & therapeutic system in cancer therapy.
1. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 2013. 63(1): p. 11-30.
2. Henderson, B.W. and T.J. Dougherty, HOW DOES PHOTODYNAMIC THERAPY WORK? Photochemistry and Photobiology, 1992. 55(1): p. 145-157.
3. Moan, J. and K. Berg, THE PHOTODEGRADATION OF PORPHYRINS IN CELLS CAN BE USED TO ESTIMATE THE LIFETIME OF SINGLET OXYGEN. Photochemistry and Photobiology, 1991. 53(4): p. 549-553.
4. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nat Rev Cancer, 2003. 3(5): p. 380-387.
5. Yano, S., et al., Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011. 12(1): p. 46-67.
6. Castano, A.P., P. Mroz, and M.R. Hamblin, Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer, 2006. 6(7): p. 535-545.
7. Norum, O.-J., et al., Photochemical internalization (PCI) in cancer therapy: From bench towards bedside medicine. Journal of Photochemistry and Photobiology B: Biology, 2009. 96(2): p. 83-92.
8. Selbo, P.K., et al., Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. Journal of Controlled Release, 2010. 148(1): p. 2-12.
9. Ackroyd, R., et al., The History of Photodetection and Photodynamic Therapy¶. Photochemistry and Photobiology, 2001. 74(5): p. 656-669.
10. A. Orenstein, G.K., L. Roitman, Y. Shechtman, Y. Kopolovic, B. Ehrenberg, and Z. Malik, A comparative study of tissue distribution and photodynamic therapy selectivity of chlorin e6, Photofrin II and ALA-induced protoporphyrin IX in a colon carcinoma model. Br J Cancer, 1996. 73: p. 937-944.
11. Kinsella, T.J., et al., Photodynamic therapy in oncology. Expert Opinion on Pharmacotherapy, 2001. 2(6): p. 917-927.
12. H. B. Ris, H.J.A., R. Inderbitzi, R. Hess, B. Nachbur, J. C. Stewart, Q. Wang, C. K. Lim, R. Bonnett, M. C. Berenbaum, Photodynamic therapy with chlorins for diffuse malignant mesothelioma: initial clinical results. Br J Cancer., 1991. 64: p. 1116–1120.
13. Rebeiz, C.A., et al., TETRAPYRROLE-DEPENDENT PHOTODYNAMIC HERBICIDES. Photochemistry and Photobiology, 1990. 52(6): p. 1099-1117.
14. Kennedy, J.C., R.H. Pottier, and D.C. Pross, Photodynamic therapy with endogenous protoporphyrin: IX: Basic principles and present clinical experience. Journal of Photochemistry and Photobiology B: Biology, 1990. 6(1–2): p. 143-148.
15. Schoenfeld, N., et al., The heme biosynthetic pathway in lymphocytes of patients with malignant lymphoproliferative disorders. Cancer Letters, 1988. 43(1–2): p. 43-48.
16. Smith, A.N.N., Mechanisms of Toxicity of Photoactivated Artificial Porphyrins Role of Porphyrin-Protein Interactions. Annals of the New York Academy of Sciences, 1987. 514(1): p. 309-322.
17. Moan, J. and K. Berg, PHOTOCHEMOTHERAPY OF CANCER: EXPERIMENTAL RESEARCH. Photochemistry and Photobiology, 1992. 55(6): p. 931-948.
18. Dougherty, T.J., PHOTODYNAMIC THERAPY. Photochemistry and Photobiology, 1993. 58(6): p. 895-900.
19. Chakraborti, A., Interaction of porphyrins with heme proteins – a brief review. Molecular and Cellular Biochemistry, 2003. 253(1-2): p. 49-54.
20. Manasi Das , C.M.a.S.K.S., Ligand-based targeted therapy for cancer tissue. Expert Opin.Drug Deliv, 2009. 6: p. 285-304.
21. Xu Wang , L.Y., Zhuo , Chen and Dong M. Shin Application of Nanotechnology in Cancer Therapy and Imaging. CA Cancer J. Clin, 2008. 58: p. 97-110.
22. Sengupta, S., et al., Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature, 2005. 436(7050): p. 568-572.
23. Danhier, F., O. Feron, and V. Préat, To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 2010. 148(2): p. 135-146.
24. Stephan Linka , M.A.a.E.-S., Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phy. Chem, 2000. 19(3): p. 409-453.
25. Dreaden, E.C., et al., The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews, 2012. 41(7): p. 2740-2779.
26. Samanta, B., et al., Protein-passivated Fe3O4nanoparticles: low toxicity and rapid heating for thermal therapy. Journal of Materials Chemistry, 2008. 18(11): p. 1204-1208.
27. Acharya, S., F. Dilnawaz, and S.K. Sahoo, Targeted epidermal growth factor receptor nanoparticle bioconjugates for breast cancer therapy. Biomaterials, 2009. 30(29): p. 5737-5750.
28. Misra, R., S. Acharya, and S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discovery Today, 2010. 15(19–20): p. 842-850.
29. Dhruba J Bharali, M.K., Mujgan Gurbuz, Tessa M Simone and Shaker A Mousa Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. Int. J. Nanomed, 2009. 4: p. 1–7.
30. Alex Sparreboom, C.D.S., Vuong Trieu, Paul J. Williams, Tapas De, and B.B. Andrew Yang, William D. Figg, Michael Hawkins, and Neil Desai, Comparative Preclinical and Clinical Pharmacokinetics of a
Cremophor-Free, Nanoparticle Albumin-Bound Paclitaxel
(ABI-007) and Paclitaxel Formulated in Cremophor (Taxol). Clin Cancer Res, 2005. 11: p. 4136-4143.
31. Malam, Y., M. Loizidou, and A.M. Seifalian, Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 2009. 30(11): p. 592-599.
32. Laurent, S., et al., Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews, 2008. 108(6): p. 2064-2110.
33. Jiang, W., et al., Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. Journal of Magnetism and Magnetic Materials, 2004. 283(2–3): p. 210-214.
34. da Costa, G.M., et al., Synthesis and Characterization of Some Iron Oxides by Sol-Gel Method. Journal of Solid State Chemistry, 1994. 113(2): p. 405-412.
35. Deng, Y., et al., Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. Journal of Magnetism and Magnetic Materials, 2003. 257(1): p. 69-78.
36. Abu Mukh-Qasem, R. and A. Gedanken, Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 2005. 284(2): p. 489-494.
37. Chen, D. and R. Xu, Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Materials Research Bulletin, 1998. 33(7): p. 1015-1021.
38. Hyeon, T., et al., Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Journal of the American Chemical Society, 2001. 123(51): p. 12798-12801.
39. Basak, S., D.-R. Chen, and P. Biswas, Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law. Chemical Engineering Science, 2007. 62(4): p. 1263-1268.
40. Veintemillas-Verdaguer, S., M.P. Morales, and C.J. Serna, Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis. Materials Letters, 1998. 35(3–4): p. 227-231.
41. Kang, Y.S., et al., Synthesis and Characterization of Nanometer-Size Fe3O4 and γ-Fe2O3 Particles. Chemistry of Materials, 1996. 8(9): p. 2209-2211.
42. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chemical Communications, 2003(8): p. 927-934.
43. Kang, E., et al., Direct Synthesis of Highly Crystalline and Monodisperse Manganese Ferrite Nanocrystals. The Journal of Physical Chemistry B, 2004. 108(37): p. 13932-13935.
44. Kwon, S.G., et al., Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process. Journal of the American Chemical Society, 2007. 129(41): p. 12571-12584.
45. Sun, S. and H. Zeng, Size-Controlled Synthesis of Magnetite Nanoparticles. Journal of the American Chemical Society, 2002. 124(28): p. 8204-8205.
46. Xu, Z., et al., Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chemistry of Materials, 2009. 21(9): p. 1778-1780.
47. Hou, Y., Z. Xu, and S. Sun, Controlled Synthesis and Chemical Conversions of FeO Nanoparticles. Angewandte Chemie International Edition, 2007. 46(33): p. 6329-6332.
48. Peng, S. and S. Sun, Synthesis and Characterization of Monodisperse Hollow Fe3O4 Nanoparticles. Angewandte Chemie International Edition, 2007. 46(22): p. 4155-4158.
49. Kai Cheng, S.P., Chenjie Xu, Shouheng Sun, Porous Hollow Fe3O4 Nanoparticles for Targeted Delivery and Controlled Release of Cisplatin. J Am Chem Soc, 2009. 131: p. 10637–10644.
50. Veiseh, O., J.W. Gunn, and M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010. 62(3): p. 284-304.
51. Jokerst, J.V., et al., Nanoparticle PEGylation for imaging and therapy. Nanomedicine, 2011. 6(4): p. 715-728.
52. Xie, J., et al., Controlled PEGylation of Monodisperse Fe3O4 Nanoparticles for Reduced Non-Specific Uptake by Macrophage Cells. Advanced Materials, 2007. 19(20): p. 3163-3166.
53. Chung, H.J., et al., Facile Synthetic Route for Surface-Functionalized Magnetic Nanoparticles: Cell Labeling and Magnetic Resonance Imaging Studies. ACS Nano, 2011. 5(6): p. 4329-4336.
54. Pankhurst, Q.C., J , Jones, SK and Dobson, J, Applications of magnetic nanoparticles in biomedicine. J PHYS D APPL PHYS, 2003. 36: p. 167–181.
55. KA., J.H.a.K., Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer. Adv Exp Med Biol, 2007. 599: p. 45-52.
56. Yoo, D., et al., Theranostic Magnetic Nanoparticles. Accounts of Chemical Research, 2011. 44(10): p. 863-874.
57. Sun, C., J.S.H. Lee, and M. Zhang, Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 2008. 60(11): p. 1252-1265.
58. Dobson, J., Remote control of cellular behaviour with magnetic nanoparticles. Nat Nano, 2008. 3(3): p. 139-143.
59. Gao, J., H. Gu, and B. Xu, Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Accounts of Chemical Research, 2009. 42(8): p. 1097-1107.
60. Kratz, F. and B. Elsadek, Clinical impact of serum proteins on drug delivery. Journal of Controlled Release, 2012. 161(2): p. 429-445.
61. Carter DC, H.X., Munson SH, Twigg PD, Gernert KM, Broom MB, Miller TY., Three-dimensional structure of human serum albumin. Science, 1989. 244: p. 1195–1198.
62. Carter DC, H.J., Structure of serum albumin. Adv Protein Chem, 1994. 45: p. 153-203.
63. Jr, P.T., Serum albumin. Adv Protein Chem, 1985. 37: p. 161-245.
64. Elzoghby, A.O., W.M. Samy, and N.A. Elgindy, Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release, 2012. 157(2): p. 168-182.
65. Elsadek, B. and F. Kratz, Impact of albumin on drug delivery — New applications on the horizon. Journal of Controlled Release, 2012. 157(1): p. 4-28.
66. Christian M. Mendez, C.J.M.a.L.S.M., Albumin therapy in clinical practice. Nutr. Clin. Prac., 2005. 20: p. 314–320.
67. Bosse, D., et al., Phase I Comparability of Recombinant Human Albumin and Human Serum Albumin. The Journal of Clinical Pharmacology, 2005. 45(1): p. 57-67.
68. Beyer, F.K.a.U., Serum Proteins as Drug Carriers of Anticancer Agents: A Review. Drug Deliv, 1998. 5: p. 281–299.
69. Kratz, F., Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 2008. 132(3): p. 171-183.
70. Hawkins, M.J., P. Soon-Shiong, and N. Desai, Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 2008. 60(8): p. 876-885.
71. Liu, Z., et al., Polysaccharides-based nanoparticles as drug delivery systems. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1650-1662.
72. Casals, E., et al., Hardening of the Nanoparticle–Protein Corona in Metal (Au, Ag) and Oxide (Fe3O4, CoO, and CeO2) Nanoparticles. Small, 2011. 7(24): p. 3479-3486.
73. Milani, S., et al., Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona. ACS Nano, 2012. 6(3): p. 2532-2541.
74. Casals, E., et al., Time Evolution of the Nanoparticle Protein Corona. ACS Nano, 2010. 4(7): p. 3623-3632.
75. Lundqvist, M., et al., The Evolution of the Protein Corona around Nanoparticles: A Test Study. ACS Nano, 2011. 5(9): p. 7503-7509.
76. Yang, S.-T., et al., Biosafety and Bioapplication of Nanomaterials by Designing Protein–Nanoparticle Interactions. Small, 2013. 9(9-10): p. 1635-1653.
77. Bora, D.K. and P. Deb, Fatty Acid Binding Domain Mediated Conjugation of Ultrafine Magnetic Nanoparticles with Albumin Protein. Nanoscale Research Letters, 2009. 4(2): p. 138-143.
78. Yim, Y.S., et al., A facile approach for the delivery of inorganic nanoparticles into the brain by passing through the blood-brain barrier (BBB). Chemical Communications, 2012. 48(1): p. 61-63.
79. Zhang, B., et al., Ultrasound-Triggered BSA/SPION Hybrid Nanoclusters for Liver-Specific Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2012. 4(12): p. 6479-6486.
80. Bellusci, M., et al., Preparation of albumin–ferrite superparamagnetic nanoparticles using reverse micelles. Polymer International, 2009. 58(10): p. 1142-1147.
81. Huang, J., et al., Casein-Coated Iron Oxide Nanoparticles for High MRI Contrast Enhancement and Efficient Cell Targeting. ACS Applied Materials & Interfaces, 2013. 5(11): p. 4632-4639.
82. Qiao, R., et al., Receptor-Mediated Delivery of Magnetic Nanoparticles across the Blood–Brain Barrier. ACS Nano, 2012. 6(4): p. 3304-3310.
83. Quan, Q., et al., HSA Coated Iron Oxide Nanoparticles as Drug Delivery Vehicles for Cancer Therapy. Molecular Pharmaceutics, 2011. 8(5): p. 1669-1676.
84. Vivero-Escoto, J.L. and D.L. Vega, Stimuli-responsive protoporphyrin IX silica-based nanoparticles for photodynamic therapy in vitro. RSC Advances, 2014. 4(28): p. 14400-14407.
85. Lim, C.-K., et al., Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Letters, 2013. 334(2): p. 176-187.
86. Selbo, P.K., et al., 5-Aminolevulinic Acid–based Photochemical Internalization of the Immunotoxin MOC31-gelonin Generates Synergistic Cytotoxic Effects In Vitro¶. Photochemistry and Photobiology, 2001. 74(2): p. 303-310.
87. Peng, S., et al., Synthesis and Stabilization of Monodisperse Fe Nanoparticles. Journal of the American Chemical Society, 2006. 128(33): p. 10676-10677.
88. Brancaleon, L., et al., Characterization of the photoproducts of protoporphyrin IX bound to human serum albumin and immunoglobulin G. Biophysical Chemistry, 2004. 109(3): p. 351-360.
89. Feng Yang , Y.Z.a.H.L., Interactive Association of Drugs Binding to Human Serum Albumin Int. J. Mol. Sci., 2014. 15: p. 3580-3595.
90. Brancaleon, L. and H. Moseley, Effects of photoproducts on the binding properties of protoporphyrin IX to proteins. Biophysical Chemistry, 2002. 96(1): p. 77-87.
91. Rinco, O., et al., The effect of porphyrin structure on binding to human serum albumin by fluorescence spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2009. 208(2–3): p. 91-96.
92. Zhang, B., et al., Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Materials Science and Engineering: C, 2013. 33(7): p. 4401-4408.
93. Yang, Q., J. Liang, and H. Han, Probing the Interaction of Magnetic Iron Oxide Nanoparticles with Bovine Serum Albumin by Spectroscopic Techniques. The Journal of Physical Chemistry B, 2009. 113(30): p. 10454-10458.