研究生: |
林蒼威 Lin, Tsang-Wei |
---|---|
論文名稱: |
大客車適應性巡航控制與防撞警示系統設計及駕駛者模型建立 Interface Design and Driver Model on Adaptive Cruise Control and Collision Warning Systems in Buses |
指導教授: |
黃雪玲
Hwang, Sheue-Ling |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 適應性巡航控制系統 、防撞警示系統 、駕駛者模型 、駕駛安全 、大客車 |
外文關鍵詞: | Adaptive cruise control (ACC), Collision warning systems (CWS), Human driver model, Safety, Buses |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據內政部警政署調查統計,2007年台灣地區國道車輛肇事的原因,駕駛者分心、未保持安全距離、超速三項共佔了超過三分之一的比率。針對這些問題,近年來已經有許多先進的科技被應用在提昇車輛的安全性上,用以分擔駕駛者的工作量,如協助駕駛、或是提供有用的資訊。在協助駕駛者方面,最廣為討論的即是先進車輛控制與安全系統 (AVCSS),主要包含用以輔助「控制」的適應性巡航系統 (ACC),以及輔助「駕駛安全」的防撞警示系統 (CWS)。這些先進科技應用的目的都是在於提昇駕駛的安全性、便利性、與效率,但不良的系統設定或介面設計卻反而會造成反效果,例如可能使駕駛者分心或是產生混淆,並且各種不同的系統同時作用,也可能因為系統衝突、競爭、干擾等,而產生負面的影響。
因此本研究主要目的在於找到兼顧安全性與人性化的ACC參數設定,以及CWS介面設計,並建立駕駛者與系統互動之行為模型,而由於大客車發生意外造成的嚴重性高,本研究特別針對大客車駕駛環境來討論,因此過程中主要利用職業大客車駕駛以及大客車駕駛模擬器來完成,整個研究包含了以下三個階段: ACC/CWS系統評估、駕駛行為概念模型建立、模型驗證與應用。第一階段的主要工作在於改善ACC的參數與評估CWS的系統介面,模擬器實驗中的ACC與CWS系統係參考國際車輛工程協會 (SAE International) 的規範,並以駕駛相關的效標來加以評估,如主觀評量及駕駛績效;其中參數、介面可提供第三階段研究作為模型建構用,而駕駛績效則作為模型驗證用。接下來第二階段主要在於建構駕駛者之行為模式概念,並提出模型的雛型,以使用ACC為例,以待第三階段驗證。在最後的第三階段,主要採用模擬的方式,其模型建構與驗證是基於第一階段的實驗設定與結果,以及第二階段的概念模型。
本研究貢獻可同時涵蓋系統設計者、系統使用者、以及政府參考三方面,系統評估結果可給予設計者作為參考,並且作為日後ACC/CWS相關研究應用的準則;使用者亦可在使用這些先進科技時更加的安全、方便、有效;同時,政府機關在制定安全建議或車輛設計規範時,亦有確切的原則能夠遵循。此外,除了以上之應用,駕駛行為模型的建立與驗證,兼具了理論與實驗驗證,可用於未來評估ACC,亦可預測駕駛績效,並期望應用於其他先進輔助系統。
According to the official investigation in Taiwan, 2007, driver’s distraction, speeding, and short headway keeping result in more than one third proportions of accidents on the freeway driving and are harmful to transportation safety. With the development of advanced technologies, lots of techniques that can share out drivers’ workload have been applied to in-vehicle task assistance and helpful information provision in the recent day. For in-vehicle assistance, the “control-aided” adaptive cruise control (ACC) and the “safety-aided” collision warning system (CWS) are widely discussed for advanced vehicle control and safety system (AVCSS). The purpose of these technologies is to enhance driving safety, convenience, and efficiency originally. However, improper system and interface design may cause against the result instead, such as distracting and confusing drivers. And further, the integration of different systems should also bring about negative effects as a result of the conflict, resource competition, or mutual interference between systems.
The objective of this research is to find out safe and human-based parameter settings on ACC and interface design on CWS. Also, to construct the human driver model when interacting with assist systems. Bus driving environment is the focused issue because traffic accidents will be more terrible on buses and need to be concerned. Therefore, professional bus drivers and the bus driving simulator are introduced to this research. This research will progress via three phases, human driver model conceptualization, ACC/CWS improvement, and model realization/validation. In the first phase, main tasks are the experiment of time-gap parameter improvement for ACC and the interface evaluation for CWS. The construction of ACC and CWS is referred to the standard issued by SAE International. The safety is defined by driving-related measures, such as driver’s subjective evaluation and driving performance. Parameters and interface improvements are for model realization, and the empirical driving data are for model validation in the final phase. Secondly, the conceptual human driver model is going to be brought up, with using ACC as an example. This prototype will be validated in the next phase. Finally, the concept model will be simulated based on the prototype from the second phase, and the settings and results from the experiment of phase 1.
The contribution of this research includes the dimensions of designers, end-users, and the government. The experimental results are flexible for specialists’ reference and applicable for related studies of ACC/CWS on buses. Drivers can also drive with these advanced technologies more safely, conveniently, and efficiently. The findings on the interaction among systems are also helpful for recommendation of driving safety by the government. Besides, the validated model not only can be applied to further evaluation of ACC, but it can also be the reference and performance prediction tool for advanced assist systems.
Abe, G., & Richardson, J. (2004). The effect of alarm timing on driver behaviour: an investigation of differences in driver trust and response to alarms according to alarm timing. Transportation Research Part F, 7(4-5), 307-322.
Abe, G., & Richardson, J. (2005). The influence of alarm timing on braking response and driver trust in low speed driving. Safety Science, 43(9), 639-654.
Abe, G., & Richardson, J. (2006). Alarm timing, trust and driver expectation for forward collision warning systems. Applied Ergonomics, 37(5), 577-586.
Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.
Bellet, T., & Tattegrain-Veste, H. (1999). A framework for representing driving knowledge. International Journal of Cognitive Ergonomics, 3(1), 37-49.
Belz, S. M., Robinson, G. S., & Casali, J. G. (1999). A new class of auditory warning signals for complex systems: auditory incons. Human Factors, 41(4), 608-618.
Ben-Yaacov, A., Maltz, M., & Shinar, D. (2002). Effects of an in-vehicle collision avoidance warning system on short- and long-term driving performance. Human Factors, 44(2), 335-342.
Bjørkli, C. A., & Jenssen, G. D. (2003, 16-20 November). Adaptive cruise control (ACC) and driver performance: Effects on objective and subjective measures. Paper presented at the 10th World Congress on Intelligent Transportation Systems, Madrid, Spain.
Blanco, M., Biever, W. J., Gallagher, J. P., & Dingus, T. A. (2006). The impact of secondary task cognitive processing demand on driving performance. Accident Analysis and Prevention, 38(5), 895-906.
Chen, W.-H., Lee, S.-W., Kao, K.-C., & Chiou, J.-M. (2007). Young driver preferences and experimental investigation of audio and visual interface designs for in-vehicle information systems. Paper presented at the 86th Transportation Research Board Annual Meeting, Washington D.C., USA.
Chen, W.-H., Lin, C.-Y., & Doong, J.-L. (2005). Effects of IVIS interface workload on driving safety. Transportation Research Record(1937), 73-78.
Cheng, B., Hashimoto, M., & Suetomi, T. (2002). Analysis of driver response to collision warning during car following. JSAE Review, 23(2), 231-237.
Cox, T. F. (2005). An Introduction to Multivariate Data Analysis. New York: Hodder Education.
Delorme, D., & Song, B. (2001). Human driver model for SmartAHS (Report No. UCB-ITS-PRR-2001-12). Berkeley, CA, USA: Institute of Transportation Studies.
Dingus, T. A., McGehee, D. V., Manakkal, N., Jahns, S. K., Carney, C., & Hankey, J. M. (1997). Human factors field evaluation of automotive headway maintenance/collision warning devices. Human Factors, 39(2), 216-229.
Endsley, M. R. (1995a). Measurement of situation awareness in dynamic systems. Human Factors, 37(1), 65-84.
Endsley, M. R. (1995b). Toward a theory of situation awareness in dynamic systems. Human Factors, 37(1), 32-64.
Engström, J., Johansson, E., & Östlund, J. (2005). Effects of visual and cognitive load in real and simulated motorway driving. Transportation Research Part F, 8(2), 97-120.
Fancher, P., Ervin, R., Sayer, J., Hagan, M., Bogard, S., Bareket, Z., et al. (1998). Intelligent cruise control field operational test (Report No. DOT HS 808 849). Washington, D.C.: National Highway Traffic Safety Administration.
Godley, S. T., Triggs, T. J., & Fildes, B. N. (2002). Driving simulator validation for speed research. Accident Analysis and Prevention, 34(5), 589-600.
Green, P. A. (2001). Safeguards for on-board wireless communications. Paper presented at the 2nd Annual Plastics in Automotive Safety Conference, Troy, MI, USA.
Haigney, D. E., Taylor, R. G., & Westerman, S. J. (2000). Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transportation Research Part F, 3(3), 113-121.
Hankey, J. M., Dingus, T. A., Hanowski, R. J., Wierwille, W. W., & Andrews, C. (2000). In-vehicle information systems behavioral model and design support: IVIS DEMAnD prototype software user's manual (Report No. FHWA-RD-00-136). McLean, VA, USA: Turner-Fairbank Highway Research Center.
Harbluk, J. L., & Noy, Y. I. (2002). The impact of cognitive distraction on visual behaviour and vehicle control (Report no. TP13889E) (Report). Ontario: Transport Canada.
Harbluk, J. L., Noy, Y. I., Trbovich, P. L., & Eizenman, M. (2007). An on-road assessment of cognitive distraction: Impacts on drivers' visual behavior and braking performance. Accident Analysis and Prevention, 39(2), 372-379.
Harder, K. A., Bloomfield, J., & Chihak, B. J. (2003). The effectiveness of auditory side-and-forward-collision avoidance warnings in winter driving conditions (Report No. MN/RC 2003-14). St. Paul: Minnesota Department of Transportation.
Ho, C., Reed, N., & Spence, C. (2006). Assessing the effectiveness of "intuitive" vibrotactile warning signals in preventing front-to-rear-end collisions in a driving simulator. Accident Analysis and Prevention, 38(5), 988-996.
Hoedemaeker, M., & Brookhuis, K. A. (1998). Behavioural adaptation to driving with an adaptive cruise control (ACC). Transportation Research Part F, 1(2), 95-106.
Horberry, T., Anderson, J., Regan, M. A., Triggs, T. J., & Brown, J. (2006). Driver distraction: The effects of concurrent in-vehicle tasks, road environment complexity and age on driving performance. Accident Analysis and Prevention, 38(1), 185-191.
Horrey, W. J., & Wickens, C. D. (2003). Multiple resource modeling of task interference in vehicle control, hazard awareness and in-vehicle task performance. Paper presented at the Proceedings of the Second International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, Park City, Utah.
JAMA. (2004). Guideline for in-vehicle display systems-Version 3.0 (Report): Japan Automobile Manufactures Association (JAMA).
Keele, S. W. (1986). Motor control. In K. Boff, L. Kaufman & J. Thomas (Eds.), Handbook of perception and human performance, vol.2: Cognitive processes and performance. New York: Wiley.
Lamble, D., Kauranen, T., Laakso, M., & Summala, H. (1999). Cognitive load and detection thresholds in car following situations: safety implications for using mobile (cellular) telephones while driving. Accident Analysis and Prevention, 31(6), 617-623.
Lee, J., Mcgehee, D. V., Dingus, T. A., & Wilson, T. (1997). Collision avoidance behavior of unalerted drivers using a front-to-rear-end collision warning display on the IOWA driving simulator. Transportation Research Record, 1573, 1-7.
Lee, J. D., Caven, B., Haake, S., & Brown, T. L. (2001). Speech-based interaction with in-vehicle computers: The effect of speech-based e-mail on drivers' attention to the roadway. Human Factors, 43(4), 631-640.
Lehto, M. R., Papastavrou, J. D., Ranney, T. A., & Simmons, L. A. (2000). An experimental comparison of conservative versus optimal collision avoidance warning system thresholds. Safety Science, 36(3), 185-209.
Liu, Y., & Özgüner, Ü. (2007, June 13-15). Human driver model and driver decision making for intersection driving. Paper presented at the 2007 IEEE Intelligent Vehicles Symposium, Istanbul, Turkey.
Ma, R., & Kaber, D. B. (2005). Situation awareness and workload in driving while using adaptive cruise control and a cell phone. International Journal of Industrial Ergonomics, 35(10), 939-953.
Massaro, D. W., & Schmuller, J. (1975). Visual features, preperceptual storage, and processing time in reading. In D. W. Massaro (Ed.), Understanding Language, An Information-Processing Analysis of Speech Perception, Reading, and Psycholinguistics. New York: ACADEMIC PRESS, INC.
Michon, J. A. (1985). A critical view of driver behavior models: What do we know, what should we do? In L. Evans & R. C. Schwing (Eds.), Human Behavior and Traffic Safety. New York: Plenum Press.
Mitchell, D. K. (2003). Advanced improved performance research integration tool (IMPRINT) (Report No. ARL-TN-0208). Aberdeen Proving Ground, MD: Army Research Laboratory.
MOI. (2008a). 96 年警察機關受(處)理A1 類道路交通事故概況. Retrieved. from http://www.npa.gov.tw/NPAGip/wSite/ct?xItem=39497&ctNode=11393&mp=1.
MOI. (2008b). 高速公路交通事故(A1 類)特性分析. Retrieved. from http://www.npa.gov.tw/NPAGip/wSite/ct?xItem=39665&ctNode=11393&mp=1.
Moon, Y.-J., Lee, J., & Park, Y. (2003). System integration and field tests for developing in-vehicle dilemma zone warning system. Transportation Research Record, 1826, 53-59.
Multz, M., & Shinar, D. (2007). Imperfect in-vehicle collision avoidance warning systems can aid distracted drivers. Transportation Research Part F, 10(4), 345-357.
Noy, Y. I., Lemoine, T. L., Klachan, C., & Burns, P. C. (2004). Task interruptability and duration as measures of visual distraction. Applied Ergonomics, 35(3), 207-213.
Ohno, H. (2001). Analysis and modeling of human driving behaviors using adaptive cruise control. Applied Soft Computing, 1(3), 237-243.
Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of Marketing Research, 20(2), 134-148.
Radwin, R. G., Vanderheiden, G. C., & Lin, M.-L. (1990). A method for evaluating head-controlled computer input devices using Fitts' Law. Human Factors, 32(4), 423-438.
Rasmussen, J. (1983). Skill, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13, 257-266.
Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: Effects on visual search, discrimination, and decision making. Journal of Experimental Psychology, 9(2), 119-137.
Reichart, G., Haller, R., & Naab, K. (1996). Driver assistance: BMW solutions for the future of individual modality. Paper presented at the 3rd Annual World Congress on Intelligent Transport Systems, Orlando, FL, USA.
Richard, C. M., Wright, R. D., Ee, C., Prime, S. L., Shimizu, Y., & Vavrik, J. (2002). Effect of a concurrent auditory task on visual search performance in a driving-related image-flicker task. Human Factors, 44(1), 108-119.
SAE. (2003a). Adaptive Cruise Control (ACC) Operating Characteristics and User Interface (Report). Warrendale, PA: SAE International.
SAE. (2003b). Human factors in forward collision warning systems: Operating characteristics and user interface requirements (Report). Warrendale, PA: SAE International.
Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human Factors, 48(2), 362-380.
Sekizawa, S., Inagaki, S., Suzuki, T., Hayakawa, S., Tsuchida, N., Tsuda, T., et al. (2007). Modeling and recognition of driving behavior based on stochastic switched ARX model. IEEE Transactions on intelligent transportation systems, 8(4), 593-606.
Stanton, N. A., & Young, M. S. (2005). Driver behaviour with adaptive cruise control. Ergonomics, 48(10), 1294-1313.
Stanton, N. A., Young, M. S., & McCaulder, B. (1997). Drive-by wire: The case of driver workload and reclaiming control with adaptive cruise control. Safety Science, 27(2-3), 149-159.
Stanton, N. A., Young, M. S., Walker, G. H., Turner, H., & Randle, S. (2001). Automating the driver's control tasks. International Journal of Cognitive Ergonomics, 5(3), 221-236.
Su, J.-M., Hwang, S.-L., & Doong, J.-L. (2005). 先進安全大客車行車安全參數與駕駛者介面之設計與評估(總計畫) (Report No. NSC93-2218-E-216-012-). Taipei: National Science Council.
Summala, H., Lamble, D., & Laakso, M. (1998). Driving experience and perception of the lead car's braking when looking at in-car targets. Accident Analysis and Prevention, 30(4), 401-407.
Suzuki, H., & Nakatsuji, T. (2003). Effect of adaptive cruise control (ACC) on traffic throughput: numerical example on actual freeway corridor. JSAE Review, 24(4), 403-410.
Tattegrain-Veste, H., Bellet, T., Pauzié, A., & Chapon, A. (1996). Computational driver model in transport engineering: COSMODRIVE. Transportation Research Record, 1550, 1-7.
Thompson, L. K., Tönnis, M., Lange, C., Bubb, H., & Klinker, G. (2006, 10-14 July). Effect of active cruise control design on glance behaviour and driving performance. Paper presented at the 16th World Congress on Ergonomics, Maastricht the Netherlands.
Törnros, J. (1998). Driving behaviour in a real and a simulated road tunnel - A validation study. Accident Analysis and Prevention, 30(4), 497-503.
Törnros, J., Nilsson, L., Östlund, J., & Kircher, A. (2002, 14-17 October). Effects of ACC on driver behaviour, workload and acceptance in relation to minimum time headway. Paper presented at the 9th World Congress on Intelligent Transportation Systems, Chicago, Illinois.
Tsimhoni, O., & Liu, Y. (2003). Modeling steering using the Queueing Network-Model Human Processor (QN-MHP). Paper presented at the Proceedings of the Human Factors and Ergonomics Society 47th Annual Meeting, Denver, CO, USA.
Van der Molen, H. H., & Bötticher, M. T. (1988). A hierarchical risk model for traffic participants. Ergonomics, 31(4), 537-555.
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. American Statistical Association Journal, 58(301), 236-244.
Ward, N. J. (2000). Automation of task processes: An example of intelligent transportation systems. Human Factors and Ergonomics in Manufacturing, 10(4), 395-408.
Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159-177.
Wickens, C. D., & Hollands, J. G. (2000). Engineering Psychology and Human Performance. New Jersey: Prentice-Hall Inc.
Yee, S., Nguyen, L., Green, P. A., Oberholtzer, J., & Miller, B. (2007). Visual, auditory, cognitive, and psychomotor demands of real in-vehicle tasks (Report No. UMTRI-2006-20). Ann Arbor, MI: University of Michigan Transportation Research Institute.
Young, M. S., & Stanton, N. A. (2004). Taking the load off: investigations of how adaptive cruise control affects mental workload. Ergonomics, 47(9), 1014-1035.
Zheng, P., & McDonald, M. (2005). Manual vs. adaptive cruise control—Can driver's expectation be matched? Transportation Research Part C, 13(5-6), 421-431.