研究生: |
吳亦悠 Wu, Yi-Yu |
---|---|
論文名稱: |
花崗岩特性對銫、硒、鈾核種的吸附行為研究 Effect of the Characteristics of Granite on the Adsorption of Cesium, Selenium and Uranium |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
談駿嵩
Tan, Chung-Sung 蔣本基 Chiang, Pen-Chi 黃志彬 Huang, Chih-Pin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 核子工程與科學研究所 Nuclear Engineering and Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 用過核子燃料 、最終處置 、花崗岩 、核種吸附 |
外文關鍵詞: | Spent nuclear fuel, Final disposal, Granite, Nuclides adsorption |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
了解核種傳輸行為特性,特別是關鍵核種的化學特性與本土地質材料特性,是用過核子燃料處置概念中,處置設施安全性評估的重要根據。本研究透過分配係數Kd值求得本島地區之吸附相關參數,並利用線性回歸評估本島母岩礦物對核種吸附之關聯性。其中Cs核種的吸附Kd值約落在60 ~ 90 mL/g、Se核種的吸附Kd值約落在0 ~ 20 mL/g、U核種的吸附Kd值約落在400 ~ 600 mL/g。而Cs核種之吸附行為受到鉀含量和雲母類礦物影響,與母岩礦物中的鉀長石、白雲母、方解石、綠簾石較為相關;而Se、U核種之吸附行為則受到鐵氧化物類礦物所影響,與母岩礦物中的石英、黑雲母、綠泥石較為相關。而經過兩年的擴散,薄片擴散實驗並未獲取任何顯著的破出曲線。本研究所得之分配係數Kd值與擴散實驗結果,是日後安全評估的珍貴參考資料。
A solid safety assessment of spent nuclear fuel is strongly relied on the deep understanding in the correlation between nuclides transport and geological materials. In this study, we use linear regression to evaluate the connection between nuclide uptake and local mineral composition. Adsorption experiments were finished under aerobic and anaerobic condition. In both conditions, determined K_d values of Cs, Se and U adsorption to H-granite lie in the region between 60 mL/g to 90 mL/g, 0 mL/g to 20 mL/g, and 400 mL/g to 600 mL/g, respectively. Importantly, we found that Cs uptake is positively correlated to the content of K-feldspar、muscovite、calcite and epidote, while Se and U uptake is positively correlated to the content of quartz、biotite and chlorite. To simulate the nuclide transport mechanism in the real geological condition, diffusion experiment with sliced granite was carried out and there were no significant breakthroughs noted in the end of two years of diffusion. Along with the distribution coefficient determined, our results would be an important reference for the safety assessment in the near future.
[1] SKB, “Technical Report TR-10-13 Spent nuclear fuel for disposal.”, 2010
[2] Posiva, “Annual Report 2016.”, 2016.
[3] 黃偉慶,「國際用過核子燃料處置規劃階段成果報告審驗技術資訊研析」,行政院原子能委員會,2014.
[4] 台灣電力公司,「用過核子燃料最終處置計畫書核定版」,2006.
[5] “深地層處置設施緩衝材料 熱 - 水力 - 力學耦合模擬研析.”
[6] 董家鈞,「低放射性廢棄物坑道處置核種傳輸審驗技術建立之資訊研析」,行政院原子能委員會,2016
[7] 林泓安,「用過核子燃料最終處置場之熱傳導等效模型建立及參數分析」,國立中央大學土木工程學系,碩士論文,2016
[8] JNC, “H12 report.”, 2000
[9] 台灣電力公司,「用過核子燃料最終處置計畫」,2006.
[10] 陳智隆、賴仁杰,「我國用過核子燃料若經再處理之高放射性廢棄物最終處置重要核種分析」,2006.
[11] 台灣電力公司,「用過核子燃料最終處置計畫104年度報告」,2015
[12] H.Qin et al., “Investigation of cesium adsorption on soil and sediment samples from Fukushima prefecture by sequential extraction and EXAFS technique,” Geochem. J., vol. 46, no. 4, pp. 297–302, 2012.
[13] N.Yoshida and Y.Takahashi, “Land-surface contamination by radionuclides from the Fukushima Daiichi nuclear power plant accident,” Elements, vol. 8, no. 3, pp. 201–206, 2012.
[14] N.Kinoshita et al., “Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan,” Proc. Natl. Acad. Sci., vol. 108, no. 49, pp. 19526–19529, 2011.
[15] K.Tanaka et al., “Vertical profiles of iodine-131 and cesium-137 in soils in Fukushima prefecture related to the Fukushima Daiichi Nuclear Power Station accident,” Geochem. J., vol. 46, no. 4, pp. 73–76, 2012.
[16] H.Kato,Y.Onda,andT.Gomi,“Interception of the Fukushima reactor accident-derived 137 Cs, 134 Cs and 131 I by coniferous forest canopies,” Geophys. Res. Lett., vol. 39, no. 20, p. L20403, 2012.
[17] S.Nagao, M.Kanamori, S.Ochiai, S.Tomihara, K.Fukushi, andM.Yamamoto, “Export of 134Cs and137 Cs in the Fukushima river systems at heavy rains by typhoon roke in september 2011,” Biogeosciences, vol. 10, no. 10, pp. 6215–6223, 2013.
[18] N.Kozai et al., “Chemical states of fallout radioactive Cs in the soils deposited at Fukushima Daiichi Nuclear Power Plant accident,” J. Nucl. Sci. Technol., vol. 49, no. 5, pp. 473–478, 2012.
[19] B. C.Bostick, M. A.Vairavamurthy, K. G.Karthikeyan, andJ.Chorover, “Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation,” Environ. Sci. Technol., vol. 36, no. 12, pp. 2670–2676, 2002.
[20] K.AKIBA, H.Hashimoto, andT.KANNO, “Distribution Exchange Coefficient Capacity of Cesium of Minerals and and Cation Rocks,” J. Nucl. Sci. Technol., vol. 26, no. 12, pp. 1130–1135, 1989.
[21] S. C.Tsai, T. H.Wang, M. H.Li, Y. Y.Wei, andS. P.Teng, “Cesium adsorption and distribution onto crushed granite under different physicochemical conditions,” J. Hazard. Mater., vol. 161, no. 2–3, pp. 854–861, 2009.
[22] A. etAl., “Selective Adsorption Behavior of Cesium Ions onto Granite.” .
[23] J. P.McKinley, J. M.Zachara, S. M.Heald, A.Dohnalkova, M. G.Newville, andS. R.Sutton, “Microscale distribution of cesium sorbed to biotite and muscovite.,” Environ. Sci. Technol., vol. 38, no. 4, pp. 1017–1023, 2004.
[24] M.Tsukamoto andT.Ohe, “Effects of biotite distribution on cesium diffusion in granite,” Chem. Geol., vol. 107, no. 1–2, pp. 29–46, 1993.
[25] M. M. S.Wooyong Um, “Adsorption Mechanisms and Transport Behavior between Selenate and Selenite on Different Sorbents,” Int. J. Waste Resour., vol. 4, no. 2, 2014.
[26] N.Zhang, L. S.Lin, andD.Gang, “Adsorptive selenite removal from water using iron-coated GAC adsorbents,” Water Res., vol. 42, no. 14, pp. 3809–3816, 2008.
[27] P.Zhang andD. L.Sparks, “Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface,” Environ. Sci. Technol., vol. 24, no. 12, pp. 1848–1856, 1990.
[28] D.Peak andD. L.Sparks, “Mechanisms of selenate adsorption on iron oxides and hydroxides,” Environ. Sci. Technol., vol. 36, no. 7, pp. 1460–1466, 2002.
[29] A.Yllera De Llano, G.Bidoglio, A.Avogadro, P. N.Gibson, andP.Rivas Romero, “Redox reactions and transport of selenium through fractured granite,” J. Contam. Hydrol., vol. 21, no. 1–4, pp. 129–139, 1996.
[30] M.Duc et al., “Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions,” J. Environ. Radioact., vol. 70, no. 1–2, pp. 61–72, 2003.
[31] M.Martínez, J.Giménez, J.DePablo, M.Rovira, andL.Duro, “Sorption of selenium(IV) and selenium(VI) onto magnetite,” Appl. Surf. Sci., vol. 252, no. 10, pp. 3767–3773, 2006.
[32] L.Zavodska, E.Kosorinova, L.Scerbakova, andJ.Lesny, “Environmental chemistry of uranium,” HV SSN 1418-7108 HEJ Manuscr. No ENV-081221-A, pp. 1–18, 2008.
[33] J.Shang, C.Liu, Z.Wang, andJ. M.Zachara, “Effect of Grain Size on Uranium ( VI ) Surface Complexation Kinetics and Adsorption Additivity,” Adsorpt. J. Int. Adsorpt. Soc., no. Vi, pp. 6025–6031, 2011.
[34] aKrestou andD.Panias, “Uranium (VI) speciation diagrams in the UO22+/CO32- /H2O system at 25 °C,” Eur. J. Miner. Process. Environ. Prot., vol. 4, no. 2, pp. 113–129, 2004.
[35] Q. H.Fan, L. M.Hao, C. L.Wang, Z.Zheng, C. L.Liu, andW. S.Wu, “The adsorption behavior of U(vi) on granite,” Environ. Sci. Process. Impacts, vol. 16, no. 3, p. 534, 2014.
[36] P.M.Fox, J.A.Davis, and J.M.Zachara, “The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz,” Geochim. Cosmochim. Acta, vol. 70, no. 6, pp. 1379–1387, 2006.
[37] S. Y.Lee and M. H.Baik, “Uranium and other trace elements’ distribution in Korean granite: Implications for the influence of iron oxides on uranium migration,” Environ. Geochem. Health, vol. 31, no. 3, pp. 413–420, 2009.
[38] S. E.Crawford, S.Lofts, and K.Liber, “The role of sediment properties and solution pH in the adsorption of uranium(VI) to freshwater sediments,” Environ. Pollut., vol. 220, pp. 873–881, 2017.
[39] B.Planer-Friedrich, “Uranium Sorption on Clay Minerals: Laboratory Experiments and Surface Complexation Modeling,” 2010.
[40] W.Dong and J.Wan, “Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments,” Environ. Sci. Technol., vol. 48, no. 12, pp. 6569–6577, 2014.
[41] A.Nakao, S.Funakawa, A.Takeda, H.Tsukada, andT.Kosaki, “The distribution coefficient for cesium in different clay fractions in soils developed from granite and Paleozoic shales in Japan,” Soil Sci. Plant Nutr., vol. 58, no. 4, pp. 397–403, 2012.
[42] A.Grutter and H. R.vonGunten, “Sorption, desorption, and isotope exchange of cesium (10-9/10-3 M) on chlorite,” Clays Clay Miner., vol. 34, no. 6, pp. 677–680, 1986.
[43] 田建鋒,「砂岩中自生綠泥石的產狀、形成機制及其分布規律」,2009.
[44] 李世紅,「Cs+和Yb3+在方解石、高嶺石、蒙脫石、綠泥石和海綠石上的吸附實驗研究」,2004.
[45] D. R.Brookshaw, J. R.Lloyd, D. J.Vaughan, and R. A. D.Pattrick, “Effects of Microbial Fe(III) Reduction on the Sorption of Cs and Sr on Biotite and Chlorite,” Geomicrobiol. J., vol. 33, no. 3–4, pp. 206–215, 2016.
[46] H.Ervanne, M.Hakanen, and J.Lehto, “Selenium sorption on clays in synthetic groundwaters representing crystalline bedrock conditions,” J. Radioanal. Nucl. Chem., vol. 307, no. 2, pp. 1365–1373, 2016.
[47] Y. L.Jan, T. H.Wang, M. H.Li, S. C.Tsai, Y. Y.Wei, andS. P.Teng, “Adsorption of Se species on crushed granite: A direct linkage with its internal iron-related minerals,” Appl. Radiat. Isot., vol. 66, no. 1, pp. 14–23, 2008.
[48] M.Rovira et al., “Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite,” J. Hazard. Mater., vol. 150, no. 2, pp. 279–284, 2008.
[49] J. D.Prikryl, A.Jain, D. R.Turner, andR. T.Pabalan, “UraniumVI sorption behavior on silicate mineral mixtures,” J. Contam. Hydrol., vol. 47, no. 2–4, pp. 241–253, 2001.
[50] C. M.Gonzalez, J.Hernandez, J. G.Parsons, andJ. L.Gardea-Torresdey, “A study of the removal of selenite and selenate from aqueous solutions using a magnetic iron/manganese oxide nanomaterial and ICP-MS,” Microchem. J., vol. 96, no. 2, pp. 324–329, 2010.
[51] J.Ikonen, M.Voutilainen, M.S.derlund, L.Jokelainen, M.Siitari-Kauppi, andA.Martin, “Sorption and diffusion of selenium oxyanions in granitic rock,” J. Contam. Hydrol., vol. 192, pp. 203–211, 2016.
[52] G.Echevarria, M. I.Sheppard, andJ. L.Morel, “Effect of pH on the sorption of uranium in soils,” J. Environ. Radioact., vol. 53, no. 2, pp. 257–264, 2001.
[53] I. A.Katsoyiannis, H.Werner Althoff, H.Bartel, andM.Jekel, “The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides,” Water Res., vol. 40, no. 19, pp. 3646–3652, 2006.
[54] I. A.Katsoyiannis, “Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: Kinetic and equilibrium studies,” J. Hazard. Mater., vol. 139, no. 1, pp. 31–37, 2007.
[55] C.Bucur, M.Olteanu, and M.Pavelescu, “Radionuclide diffusion in geological media,” vol. 51, no. horizon C, pp. 469–478, 2006.