簡易檢索 / 詳目顯示

研究生: 吳子軍
Wu,Tzu Chun
論文名稱: 自走機器人之追蹤避障與無線充電
Toward the Collision Avoidance of an Autonomous Robot and Wireless Power Transfer
指導教授: 陳建祥
Chen, Jian Shiang
口試委員: 曾坤祥
Tzeng, Kune Shiang
葉廷仁
Yeh, Ting-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 人工勢場法輪型機器人共振推挽式轉換器無線能量傳輸避障
外文關鍵詞: Artificial Potential Field Method, Wheeled robot, Resonant push-pull converter, Wireless power transfer, Obstacle avoidance
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用共振推挽式轉換器,實現無線充電,並將此功能與輪型機器人做結合;而輪型機器人的避障策略則採用人工勢場法,並利用雷射測距儀擷取環境資訊,實現避障。
    共振推挽式轉換器將開關操作在零電壓(Zero Voltage Switching, ZVS)狀態,來減少轉換器在開關切換時所造成能量的損失,而實現ZVS電路最常見的技巧則是利用共振現象。而共振槽(resonant tank)擁有很低的阻抗,可以將電流(能量)鎖於此槽,然而,開關的切換頻率會影響儲存於共振槽能量的多寡,當切換頻率與共振頻率一樣時,則能100% 不讓共振槽內的能量流失。而Mazzilli 電路利用交錯偶合二極體(cross-coupled diode),來控制開關的頻率與關閉時機,藉以簡化複雜的開關訊號電路。
    而人工勢場法則是將環境視為一虛擬勢能場,其中目標點產生引力場,障礙物則產生斥力場,在合力場中由高勢能往低勢能移動,以此機制決定機器人的移動路徑與速度,以避開障礙物並抵達目標點。
    實驗中包含無線能量傳輸電路模擬與燈泡負載下的實驗,鉛酸電池無線充電實驗,最後結合避障功能,使輪型機器人可以閃避障礙物,抵達車庫內進行充電。


    In this thesis, a push-pull resonant converter is used to realize the wireless charging system, combined with wheeled robot. And the way of avoiding obstacle is artificial potential filed method. We used laser range finder to complete this avoiding obstacle function.
    The push-pull resonant converter makes the switch operate at zero voltage, which known as “Zero-Voltage Switching, ZVS”. When the switches operate under this condition, it can minimize the switching losses. The most common technique for achieving zero-voltage switching is to utilize the resonant phenomena. The resonant tank in the push-pull resonant converter has a very low series impedance, this can make the current(power) locked in the tank. However, the switching frequency has a great influence on the transfer efficiency. While the switching frequency is the same as the resonant frequency, the switching frequency would not reduce the power transfer. And the Mazzilli circuit utilize cross-coupled diode to control the switching frequency and the timing of closing the gate, without complicated active control circuit.
    The artificial potential filed method assumed that the environment is a virtual potential energy field. The target will generate an attractive potential field and obstacles will cause repulsive potential field to the robot. And the combination of attractive and repulsive potential field will determine the velocity of robot, making the robot move to the target and avoid the obstacles.
    The experiments include the simulation of wireless power transfer, wireless power transfer with bulb loadings, wireless charging of acid-lead battery, and the combination of obstacle avoidance and wireless charging, making the wheeled robot avoid obstacle and autodock in the garage for charging battery.

    致謝辭 i 摘要 ii Abstract iii 目錄 iv 圖目錄 v 表目錄 vi 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.3本文結構 4 第二章 問題描述 5 2.1人工勢場法之原理介紹 5 2.2共振推挽式轉換器介紹 12 第三章 實施方法 20 3.1雷射測距儀系統設計[23] 20 3.2輪型機器人運動模型與座標設定 21 3.3控制策略與命令 24 3.4無線能量傳輸發射端設計 27 3.5無線能量傳輸接收端設計 28 第四章 實驗系統架構 29 4.1輪型機器人系統架構 29 4.2無線能量傳輸系統架構 39 第五章 實驗結果與討論 41 5.1無線能量傳輸模擬與實驗 41 5.2燈泡負載實驗 46 5.3鉛酸電池無線充電實驗 47 5.4避障與無線充電整合實驗 48 5.5實驗結果與討論 50 第六章 未來工作 51 6.1本文貢獻 51 6.2未來發展與建議 51

    [1] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” International Journal of Robotics Research, Vol. 5, No. 1, pp. 90-98, 1986.
    [2] Y. Koren and J. Borenstein, “Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1398-1404, 1991.
    [3] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” IEEE Transactions on Robotics and Automation, Vol. 16, No. 5, pp. 615-620, 2000.
    [4] S. S. Ge and Y. J. Cui, “Dynamic Motion Planning for Mobile Robots Using Potential Field Method,” Autonomous Robots, Vol. 13, pp. 207-222, 2002.
    [5] L. Tang, S. Dian, G. Gu, K. Zhou, S. Wang, X. Feng, “A Novel Potential Field Method for Obstacle Avoidance and Path Planning of Mobile Robot,” Computer Science and Information Technology (ICCSIT), IEEE International Conference on , Vol. 9, pp. 633-637, 2010.
    [6] Q. Li, L. Wang, B. Chen, Z. Zhou, “An Improved Artificial Potential Field Method for Solving Local Minimum Problem,” IEEE International Conference on Control and Information Processing, Vol. 1, pp. 420-424, 2011.
    [7] C. Liu, H.A. Jr. Marcelo, K. Hariharan, S.Y. Lim, “Virtual Obstacle Concept for Local-minimum-recovery in Potential-field Based Navigation,” IEEE International Conference on Robotics and Automation, Vol. 2, pp. 983-988, 2000.
    [8] M. K. Zhang and L. S. Li, “A Method for Solving the Local Minimization Problem of Artificial Potential Field,” Computer Technology and Development, Vol. 17, No. 5, pp. 137-139, 2007.
    [9] Ming Wu and Jian-Shiang Chen, “The Design of Chattering Alleviated Sliding Mode Control Using Wavelet Approach,” International Automatic Control Coference, pp.480-485, 2013.
    [10] A.W. Green, “Modelling a push-pull parallel resonant convertor using generalized state-space averaging,” IEEE Proceedings-B, Vol. 140, No. 6, pp.350-356, November 1993.
    [11] Jonathan David Paolucci, “Novel current-fed boundary-mode parallel-resonant push-pull converter,” A thesis presented to the faculty of California Polytechnic State University, San Luis Obispo, June 2009.
    [12] 溫智凱,“結合射頻辨識與二維雷射尋標儀於輪型機器人之追蹤與避障”,國立清華大學動力機械工程學系碩士論文,中華民國一百零一年七月。
    [13] 楊甄寧,“基於人工勢場之自走車避障策略之實現”,國立清華大學動力機械工程學系碩士論文,中華民國一百零二年七月。
    [14] 梁立柏,“利用微控器於自走車避障之實現”,國立清華大學動力機械工程學系碩士論文,中華民國一百零三年七月。
    [15] 詹作晟、陳秋麟,“無線電能傳輸系統之分析與設計”, 國立台灣大學電子工程研究所論文。
    [16] http://www.hokuyo-aut.jp/ 雷射測距儀URG-04LX參考資料
    [17] http://www.microchip.com/ dsPIC33FJ128MC804 Data Sheet
    [18] http://www.st.com/ STM32F407 Data Sheet
    [19] http://www.st.com/web/en/home.html VNH2SP30-E Data Sheet
    [20] http://www.pittman-motors.com/ Pittman DC Motor SPEC PAGE
    [21] http://www.gs-battery.com.tw/index.php GS BATTERY
    [22] http://robots.mobilerobots.com/ Pioneer 3 Operations Manual
    [23] http://witricity.com/technology/witricity-the-basics/ Witricity-The Basics
    [24] https://markobakula.wordpress.com/wireless-power/miniature-wireless-power-demonstrator/ Miniature wireless power demonstrator
    [25] https://en.wikipedia.org/wiki/WiTricity Witricity from Wikipedia

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE