簡易檢索 / 詳目顯示

研究生: 何樹智
Haw, Shu Chih
論文名稱: 研究高溫高壓下多鐵材料YMnO3之晶體和電子結構以及研究鐵摻雜YMnO3單晶薄膜之結構
Study of electronic and crystal structures in multiferroic YMnO3 perovskite as a function of high temperature/pressure and in Fe-substituted YMnO3 epitaxial film on YAlO3(010) substrate
指導教授: 陳錦明
Chen, Jin Ming
李志浩
Lee, Chih Hao
口試委員: 莊振益
Juang, Jenh Yih
羅志偉
Luo, Chih Wei
林宏基
Lin, Hong Ji
學位類別: 博士
Doctor
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 140
中文關鍵詞: 多鐵材料
外文關鍵詞: multiferroic
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要內容以同步輻射光源為基礎並搭配相關技術,如X光繞射光譜,以K-edge的高解析X光吸收光譜和1s3p共振放射光譜針對過渡金屬元素錳和鐵離子,來進行研究具鈣鈦礦結構之多鐵材料釔錳氧多晶體在高溫和高壓下的晶體和電子結構。根據X光繞射光譜,釔錳氧在高溫和高壓下沒有結構相變。我們發現在高溫下楊泰勒晶格形變的減小,主要是由錳氧錳鍵角變大或八面體MnO6間的扭曲減小所造成,而在高歷下楊泰勒晶格形變的減小,則是由八面體MnO6中的錳氧長鍵被壓縮所影響。在高溫及高壓下楊泰勒晶格形變的減小,會使得兩相隣錳離子間的4p‒3d 軌道混成變大。我們亦發現釔錳氧在高溫或高壓下會有金屬行為的發生。
    此外,我們籍由過渡金屬元素錳和鐵離子在其K-edge和L2,3-edge的極化相關X光吸收光譜,研究純釔錳氧及鐵離子取代之釔錳氧單晶薄膜中的楊泰勒晶格形變及其電子組態。在理論計算方面,我們則分別利用FDMNES全多重散射計算來進行模擬過渡金屬元素錳離子在其K-edge的極化相關X光吸收光譜,以及利用configuration-interaction 多重散射計算來進行模擬過渡金屬元素錳離子在其L2,3-edge的極化相關X光吸收光譜。根據XRD結果,Fe3+離子取代Mn3+離子對晶格常數所產生的影響不大。當50% Mn3+離子被 Fe3+離子取代時,其Δeg值因受到球形對稱的Fe3+晶體場的影響會下降至0.6 eV (Mn3+離子在純釔錳氧的Δeg為 0.9 eV),但eg電子仍佔據在d3y2-r2軌道。另一方面,Fe3+離子的Δeg值則會受到Mn3+離子的影響,會從 0.15 eV (Fe3+離子的濃度為12.5%)上升至 0.5 eV (Fe3+離子的濃度為50%),且Fe3+離子會因對稱性極差之Mn3+離子晶體場的效應而產生相同的扭曲變形。從極化相關吸收光譜及理論計算所得的結果,我們推測在50% Fe3+離子取代的樣品中的磁結構屬 G-type 結構。


    The crystal and electronic structure of multiferroic o-YMnO3 polycrystals prepared under high pressure and temperature were investigated as a function of temperature up to 873 K and external pressure up to 35 GPa by synchrotron x-ray diffraction (SXRD), high-resolution x-ray absorption spectra (XAS) at Mn K-edge, 1s3p resonant x-ray emission spectra (RXES) at Mn K-edge, and Mn K-edge XAS with full multiplet-scattering calculations using FDMNES code. No phase transition in metastable o-YMnO3 up to pressure 25 GPa or temperature 873 K was observed. The Jahn-Teller (JT) reduction at high temperature is mainly caused by the increasing Mn-O-Mn bond angle or the reduction of MnO6 octahedra distortion, whereas JT reduction at high pressure is dominated by the shortening of long MnO bond in MnO6 octahedra. The reduction of JT distortion at high temperature or pressure will result in larger oxygen-mediated Mn 4p‒Mnʹ 3d intersite hybridization and thus will have a significant influence on the physical properties of o-YMnO3. Moreover, a temperature- or pressure-induced metallic behavior is enclosed in o-YMnO3.
    In the last part of the thesis, Fe-substituted o-YMn1-xFexO3(020) (for x=0.125, 0.25, 0.50) epitaxial thin films on substrate YAlO3(010) were investigated by the measurements of single crystal XRD, magnetization as a function of temperature and magnetic field, the polarization-dependent XAS at the O K-edge with LDA+U calculations, and the polarization-dependent XAS at the Mn-L2,3 and Fe-L2,3 edges with the configuration-interaction multiplet calculations. Upon Fe substitution, the b-axis is clearly decreased, while a- and c-axis are slightly increased. It is found that although Mn3+-Δeg is significantly reduced from 0.9 eV in pure o-YMnO3 to 0.6 eV in the half Fe-substituted film, a single eg electron is still strongly constrained to d3y2-r2 orbital. On the other hand, the largest Fe3+-Δeg of 0.5 eV is derived for 12.5% Fe concentration and gradually reduced to 0.15 eV in the half Fe-substituted film. Besides, the local octahedral-site distortion of Fe3+ ion inside YMnO3 lattice exhibits the similar way as that in Mn3+ ion, while JT distortion and GdFeO3-type distortion of Mn3+ ions are reduced by the spherical high spin Fe3+ ions. Moreover, the speculation of G-type magnetic structure is favorable in o-YMn0.5Fe0.5O3 thin film. The comprehensive results provide deeper insights of the variation of JT distortion and orbital anisotropy, as well as intriguing magnetic structures in the studied o-YMn1-xFexO3 thin films.

    Contents 1 Introduction 1 1.1 Characteristics of transition metal compounds . . . . . . . . . . . . 1 1.2 Perovskite ABO3 transition metal oxides . . . . . . . . . . . . . . . 4 1.3 Characteristics of magnetic materials . . . . . . . . . . . . . . . . . 5 1.3.1 Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Classi cation of magnetic material . . . . . . . . . . . . . . 6 1.4 Magnetic exchange in RMnO3 . . . . . . . . . . . . . . . . . . . . . 8 1.5 Jahn-Teller (JT) distortion . . . . . . . . . . . . . . . . . . . . . . . 14 1.6 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.6.1 Motivation I . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6.2 Motivation II . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.6.3 Motivation III . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2 Fundamental of theories 28 2.1 X-ray powder di raction . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.1 Bragg's law . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.1.2 Analysis of x-ray powder di raction . . . . . . . . . . . . . . 30 2.2 X-ray absorption spectroscopy . . . . . . . . . . . . . . . . . . . . . 34 2.2.1 Introduction to synchrotron radiation . . . . . . . . . . . . . 34 2.2.2 X-ray absorption spectroscopy (XAS) . . . . . . . . . . . . . 38 2.2.3 X-ray linear dichroism . . . . . . . . . . . . . . . . . . . . . 44 2.3 Crystal eld and ligand eld theory . . . . . . . . . . . . . . . . . . 46 2.4 Con guration-interaction cluster calculations . . . . . . . . . . . . . 49 2.4.1 Non-resonant x-ray emission spectroscopy . . . . . . . . . . 50 2.4.2 Resonant inelastic x-ray scattering (RIXS) . . . . . . . . . . 51 3 Pressure-dependent electronic and crystal structure study of or- thorhombic YMnO3 56 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.1 Synthesis of orthorhombic YMnO3 polycrystalline powder . 58 3.2 High pressure experiments . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.2 Diamond Anvil Cell (DAC) . . . . . . . . . . . . . . . . . . 60 3.2.3 Components of Diamond Anvil Cell . . . . . . . . . . . . . . 62 3.3 Crystal structure as a function of pressure and Rietveld re nement 69 3.4 Pressure-dependent Mn K-edge partial uorescence yield XAS . . . 70 3.5 Pressure-dependent resonant inelastic x-ray scattering study . . . . 72 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4 Temperature-dependent electronic and crystal structure study of orthorhombic YMnO3 82 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.1 Crystal structure as a function of temperature and Rietveld re nement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.2 Temperature-dependent Mn K-edge partial uorescence yield XAS and FDMNES simulation . . . . . . . . . . . . . . . . 88 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5 Study of anisotropic orbital occupation and Jahn-Teller distortion in orthorhombic YMnO3 95 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.3.1 Characterization of crystal structure of o-YMnO3 thin lm . 98 5.3.2 Polarization-dependent Mn K-edge XAS spectra and FDMNES calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.3.3 Con guration-interaction multiplet-cluster calculation for Mn L2;3-edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6 In uence of Fe substitution over the orbital anisotropy and Jahn- Teller distortion in orthorhombic YMn1􀀀xFexO3 epitaxial lm 108 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.1 Characterization of crystal structure of o-YMn1􀀀xFexO3 thin lm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.2 Magnetization of o-YMn1􀀀xFexO3 thin lm . . . . . . . . . . 113 6.3.3 Experimental polarization-dependent XAS at Mn L2;3-edge and Fe L2;3-edge . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.4 Con guration-interaction multiplet-cluster calculation for Mn L2;3-edge and Fe L2;3-edge . . . . . . . . . . . . . . . . . . . 117 6.3.5 Experimental polarization-dependent XAS at O K-edge of o-YMn1􀀀xFexO3 . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7 Conclusion 134 8 Publication list 137

    Chapter 1
    [1] J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).
    [2] A. S. Moskvin, Phys. Rev. B 65, 205113 (2002).
    [3] S. Yu. Ezhov, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky, Phys.
    Rev. Lett. 83, 4136 (1999).
    [4] J. Hubbard, Proc. Roy. Soc. London Ser. A 276, 238 (1963).
    [5] G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339 (1984).
    [6] R. J. Birgeneau and M. A. Kastner, Science 288, 437 (2000).
    [7] J. Orenstein and A. J. Millis, Science 288, 468 (2000).
    [8] V. M. Goldsmith, Skr. Nor. Vidensk. Akad. Mat. Naturvidensk. Kl. 2, 1
    (1926).
    [9] T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M.
    Fiebig, Nature 430, 541-544 (2004).
    [10] R. H. Buttner, and E. N. MASLEN, Acta Cryst. B48, 764-769 (1992).
    [11] S. Geller, J. Chem. Phys. 24, 1236 (1956)
    [12] J. B. Goodenough, Phys. Rev. 100, 564 (1955).
    [13] J. Kanamori, J. Phys. and Chem. of Solids 10, 87 (1959).
    [14] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T.. Takahashi, K. Ishizaka,
    and Y. Tokura, Phys. Rev. B 68, 060403(R) (2003).
    [15] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura,
    Nature 426, 55 (2003).
    [16] S-W. Cheong, and M. Mostovoy, Nat. Mater. 6, 23 (2007).
    [17] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241(1958).
    [18] T. Moriya, Phys. Rev. Lett. 4, 228 (1960).
    [19] I. A. Sergienko, C. Sen and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).
    [20] H. Katsura, N. Nagaosa, and A. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
    [21] F. S. Ham, Phys. Rev. 138, A1727 (1965).
    [22] A. J. Millis, Phys. Rev. B 53, 8434 (1996).
    [23] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H.
    Chen, Science 264, 413 (1994).
    [24] K. L. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura,Nature
    395, 677 (1998).
    [25] Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido
    and N. Furukawa, J. Phys. Soc. Jpn. 63, 3931 (1994).
    [26] M. S. Laad, L. Craco, and E. Muller-Hartmann, New J. Phys. 6, 157 (2004).
    [27] W. E. Pickett, and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
    [28] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
    [29] A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A.
    Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni, and N. B.
    Brookes, Phys. Rev. Lett. 100, 137401 (2008).
    [30] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev.
    Lett. 92, 257201 (2004).
    [31] R. Ramesh and N. A. Spaldin, Nature Mater. 6, 21 (2007).
    [32] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759
    (2006).
    [33] D. Meier, M. Maringer, Th. Lottermoser, P. Becker, L. Bohaty, and M. Fiebig,
    Phys. Rev. Lett. 102, 107202 (2009).
    [34] Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, and Y. Tokura,
    Nature Mater. 8, 558 (2009).
    [35] W. E. Pickett and J. S. Moodera, Physics Today 54, 39 (2001).
    [36] J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan,
    Nature 392, 794 (1998).
    [37] N. A. Spaldin and M. Fiebig, Science B 309, 391 (2005).
    [38] H. Schmid, Ferroelectrics 162, 317 (1994).
    [39] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.
    Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin,
    K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
    [40] S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-
    W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, Nature
    451, 805 (2008).
    [41] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature
    429, 392 (2004).
    [42] A. Mu~noz, M. T. Casais, J. A. Alonso, M. J. Martnez-Lopez, J. L. Martnez,
    and M. T. Fernandez-Daz, Inorg. Chem. 40, 1020 (2001).
    [43] D. Khomskii, Physics 2, 20 (2009).
    [44] S. Dong, R.Yu, S.Yunoki, J.-M. Liu, and E. Dagotto: Eur. Phys. J. B 71, 339
    (2009).
    [45] T.-R. Chang, H.-T. Jeng, C.-Y. Ren, and C.-S. Hsue; Phys. Rev. B 84, 024421
    (2011).
    [46] J. M. Chen; T. L. Chou, J. M. Lee, S. A. Chen, T. S. Chan, T. H. Chen, K.
    T. Lu, W. T. Chuang, H.-S. Sheu, S. W. Chen, C. M. Lin, N. Hiraoka, H.
    Ishii, K. D. Tsuei, T. J. Yang: Phys. Rev. B 79, 165110 (2009).
    [47] J. M. Chen, J. M. Lee, S. W. Huang, K. T. Lu, H. T. Jeng, C. K. Chen, S.
    C. Haw, T. L. Chou, S. A. Chen, N. Hiraoka, H. Ishii, K. D. Tsuei, and T. J.
    Yang: Phys. Rev. B 82, 094442 (2010).
    [48] R. Kajimoto, H. Mochizuki, H. Yoshizawa, H. Shintani, T. Kimura, and Y.
    Tokura, J. Phys. Soc. Jpn. 74, 2430-2433 (2005).
    [49] S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78,
    155121 (2008).
    [50] B. H. Kim and B. I. Min: Phys. Rev. B 80, 064416 (2009).
    [51] Y. Y. Chu, H. H. Wu, S. C. Liu, Hsiu-Hau Lin, J. Matsuno, H. Takagi, J. H.
    Huang, J. van den Brink, C. T. Chen, and D. J. Huang, Appl. Phys. Lett.
    100, 112406 (2012).
    [52] F.-K. Chiang, M.-W. Chu, F. C. Chou, H. T. Jeng, H. S. Sheu, F. R. Chen,
    and C. H. Chen: Phys. Rev. B 83, 245105 (2011).
    [53] V. Cuartero, J. Blasco, J. Garca, G. Subas, C. Ritter, and J. A. Rodrguez-
    Velamazan: Phys. Rev. B 81, 224117 (2010).
    [54] F. Aguado and F. Rodrguez: Phys. Rev. B 85, 100101(R) (2012).
    [55] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez: Phys. Rev. B
    71, 224425 (2005).
    [56] M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-
    Muromachi, Phys. Rev. B 75, 144425 (2007).
    [57] K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, Mater.
    Chem. Phys. 112, 1029-1034 (2008).
    [58] M. Nakamura, Y. Tokunaga,M. Kawasaki, and Y. Tokura, Appl. Phys. Lett.
    98, 082902 (2011).
    [59] J. A. Alonso, M. J. Martnez-Lope, and M. T. Casais, Inorg. Chem. 39, 917-
    923 (2000).
    [60] S. Ishiwata, Y. Tokunaga, Y. Taguchi, and Y. Tokura, J. Am. Chem. Soc.
    133, 13818-13820 (2011).
    [61] H. Wadati, J. Okamoto, M. Garganourakis, V. Scagnoli, U. Staub, and Y.
    Yamasaki, Phys. Rev. Lett. 108, 047203 (2012).
    [62] M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Chapter 2
    [1] A. Sakthivel and R. A. Young, Users guide to programs DBWS-9600 and
    DBWS-9600PC (1992).
    [2] B. T. Thole, G. van der Laan, J. C. Fuggle, G. A. Sawatzky, R. C. Karnatak,
    and J.-M. Esteva, Physical Review B 32, 5107 (1985).
    [3] C. H. Booth and F. Bridges, Physica Scripta T115, 202 (2005).
    [4] C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. Rudolf, F. Sette, and R. M.
    Fleming, Phys. Rev. Lett. 68, 2543 (1992).
    [5] M. W. Haverkort, S. I. Csiszar, Z. Hu, S. Altieri, A. Tanaka, H. H. Hsieh, H.-
    J. Lin, C. T. Chen, T. Hibma, and L. H. Tjeng, Phys. Rev. B 69, 020408(R)
    (2004).
    [6] C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill, New
    York (1962).
    [7] P. H. Butler, Point Group symmetry Applications, Plenum Press, New York
    (1981).
    [8] A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
    [9] B. T. Thole, R. D. Cowan, G. A. Sawatzky, J. Fink, and J. C. Fuggle, Phys.
    Rev. B 31, 6856 (1985).
    [10] M. W. Haverkort, arXiv:cond-mat/0505214v1(2005).
    [11] J. P. Rue , L. Journel, P. E. Petit, and F. Farges, Phys. Rev. B 69, 235107
    (2004).
    [12] E. Collart, A. Shukla, J. P. Rue , P. Leininger, H. Ishii, I. Jarrige, Y. Q. Cai,
    S. W. Cheong, and G. Dhalenne, Phys. Rev. Lett. 96, 157004 (2006).
    [13] Y. Q. Cai, C. C. Chen, P. Chow, K. L. Tsang, C. T. Chen, SRRC Activity
    Report, 83-86 (2001).
    [14] "An Introduction to Synchrotron Radiation" by Philip Willmott (2011)

    Chapter 3
    [1] C. E. Weir, E. R. Lippincott, A. V. Valkenburg, and E. N. Bunting, J. Res.
    Natl. Bur. Stand. A 63, 55 (1959).
    [2] http://www.almax-easylab.com/
    [3] J-F Lin, J. Shu, H-K Mao, R. J. Hemley, G. Shen, Rev. Sci. Instrum. 74,
    4732-4736 (2003).
    [4] H. K. Mao, C. C. Kao, and R. J. Hemley, J. Phys.: Condens. Matter 13,
    7847-7858 (2001).
    [5] K. Takemura, J. Appl. Phys. 89, 662 (2001).
    [6] Block, and J. D. Barnett, J. Appl. Phys. 44, 5377 (1973).
    [7] R. A. Forman, G. J. Piermarini, J. D. Barnett, and S. Block, Science 176,
    284 (1972).
    [8] H. K. Mao, J. Xu, and P. M. Bell, J. Geophys. Res. 91, 4673 (1986).
    [9] J. M. Chen, J. M. Lee, T. L. Chou, S. A. Chen, S. W. Huang, H. T. Jeng, K.
    T. Lu, T. H. Chen, Y. C. Liang, S. W. Chen, W. T. Chuang, H.-S. Sheu, N.
    Hiraoka, H. Ishii, K. D. Tsuei, Eugene Huang, C. M. Lin, and T. J. Yang, J.
    Chem. Phys. 133, 154510 (2010).
    [10] S. Grenier, J. P. Hill, V. Kiryukhin, W. Ku, Y. J. Kim, K. J. Thomas, S. W.
    Cheong, Y. Tokura, Y. Tomioka, D. Casa, and T. Gog, Phys. Rev. Lett. 94,
    047203 (2005).
    [11] K. Ishii, K. Tsutsui, Y. Endoh, T. Tohyama, K. Kuzushita, T. Inami, K.
    Ohwada, S. Maekawa, T. Masui, S. Tajima, Y. Murakami, and J. Mizuki,
    Phys. Rev. Lett. 94, 187002 (2005).
    [12] J. P. Rue , L. Journel, P. E. Petit, and F. Farges, Phys. Rev. B 69, 235107
    (2004).
    [13] E. Collart, A. Shukla, J. P. Rue , P. Leininger, H. Ishii, I. Jarrige, Y. Q. Cai,
    S. W. Cheong, and G. Dhalenne, Phys. Rev. Lett. 96, 157004 (2006).
    [14] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature
    (London) 429, 392 (2004).
    [15] M. Fiebig, J. Phys. D 38, R123 (2005).
    [16] R. Ramesh and N. A. Spaldin, Nat. Mater. 6, 21 (2007).
    [17] L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli,
    and S.-W. Cheong, Phys. Rev. Lett. 93, 177402 (2004).
    [18] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759
    (2006).
    [19] M. Bibes and A. Barthelemy, Nat. Mater. 7, 425 (2008).
    [20] V. E. Wood, A. E. Austin, E. W. Collings and K. C. Brog, Journal of Phys.
    and Chem. of Solids 34, 859 (1973).
    [21] S. Quezel, J. Rossat-Mignod and E. F. Bertaut, Solid State Commun. 14,
    941 (1974).
    [22] K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, Mater.
    Chem. Phys. 112, 1029-1034 (2008).
    [23] M. Nakamura, Y. Tokunaga, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett.
    98, 082902 (2011).
    [24] J. A. Alonso, M. J. Martnez-Lope, and M. T. Casais, Inorg. Chem. 39, 917-
    923 (2000).
    [25] S. Ishiwata, Y. Tokunaga, Y. Taguchi, and Y. Tokura, J. Am. Chem. Soc.
    133, 13818 (2011).
    [26] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
    Nature (London) 426, 55 (2003).
    [27] A. Mu~noz, M. T. Casais, J. A. Alonso, M. J. Martnez-Lopez, J. L. Martnez,
    and M. T. Fernandez-Daz, Inorg. Chem. 40, 1020 (2001).
    [28] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev.
    Lett. 92, 257201 (2004).
    [29] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim,
    C. L. Zhang, S. W. Cheong, O. P. Vajk and J. W. Lynn, Phys. Rev. Lett. 95,
    087206 (2005).
    [30] T. Arima, A. Tokunaga, T. Goto, H. Kimura, Y. Noda and Y. Tokura, Phys.
    Rev. Lett. 96, 097202 (2006).
    [31] S. Dong, R.Yu, S.Yunoki, J.-M. Liu, and E. Dagotto, Eur. Phys. J. B 71, 339
    (2009).
    [32] T.-R. Chang, H.-T. Jeng, C.-Y. Ren, and C.-S. Hsue, Phys. Rev. B 84, 024421
    (2011).
    [33] J. M. Chen; T. L. Chou, J. M. Lee, S. A. Chen, T. S. Chan, T. H. Chen, K.
    T. Lu, W. T. Chuang, H.-S. Sheu, S. W. Chen, C. M. Lin, N. Hiraoka, H.
    Ishii, K. D. Tsuei, T. J. Yang, Phys. Rev. B 79, 165110 (2009).
    [34] J. M. Chen, J. M. Lee, S. W. Huang, K. T. Lu, H. T. Jeng, C. K. Chen, S.
    C. Haw, T. L. Chou, S. A. Chen, N. Hiraoka, H. Ishii, K. D. Tsuei, and T. J.
    Yang, Phys. Rev. B 82, 094442 (2010).
    [35] F.-K. Chiang, M.-W. Chu, F. C. Chou, H. T. Jeng, H. S. Sheu, F. R. Chen,
    and C. H. Chen, Phys. Rev. B 83, 245105 (2011).
    [36] V. Cuartero, J. Blasco, J. Garca, G. Subas, C. Ritter, and J. A. Rodrguez-
    Velamazan, Phys. Rev. B 81, 224117 (2010).
    [37] F. Aguado and F. Rodrguez, Phys. Rev. B 85, 100101(R) (2012).
    [38] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B
    71, 224425 (2005).
    [39] B. H. Kim and B. I. Min, Phys. Rev. B 80, 064416 (2009).
    [40] V. M. Goldschmidt: Naturwissenschaften 14, 477 (1926).

    Chapter 4
    [1] Y. Tokura and N. Nagaosa, Science 288, 462 (2000).
    [2] A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A.
    Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni, and N. B.
    Brookes, Phys. Rev. Lett. 100, 137401 (2008) .
    [3] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev.
    Lett. 92, 257201 (2004) .
    [4] R. Ramesh and N. A. Spaldin, Nat. Mater. 6 , 21 (2007).
    [5] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759
    (2006) .
    [6] Y. Tokura, A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido,
    and N. Furukawa, J. Phys. Soc. Jpn. 63, 3931 (1994) .
    [7] S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H.
    Chen, Science 264, 413 (1994) .
    [8] H. Schmid, Ferroelectrics 162, 317 (1994).
    [9] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.
    Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin,
    K. M. Rabe, M. Wuttig, and R. Ramesh: Science 299, 1719 (2003).
    [10] S. Lee, A. Pirogov, M. Kang, K.-H. Jang, M. Yonemura, T. Kamiyama, S.-
    W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J.-G. Park, Nature
    451, 805 (2008) .
    [11] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
    Nature 426, 55 (2003) .
    [12] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S.-W. Cheong, Nature
    429 , 392(2004) .
    [13] D. Meier, M. Maringer, Th. Lottermoser, P. Becker, L. Bohaty , and M.
    Fiebig, Phys. Rev. Lett. 102, 107202 (2009) .
    [14] Y. Tokunaga, N. Furukawa, H. Sakai, Y. Taguchi, T. Arima, and Y. Tokura,
    Nat. Mater. 8, 558 (2009) .
    [15] S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Eur. Phys. J. B 71,
    339 (2009) .
    [16] T.-R. Chang, H.-T. Jeng, C.-Y. Ren, and C.-S. Hsue, Phys. Rev. B 84,
    024421(2011) .
    [17] J. M. Chen, T. L. Chou, J. M. Lee, S. A. Chen, T. S. Chan, T. H. Chen, K.
    T. Lu, W. T. Chuang, H.-S. Sheu, S. W. Chen, C. M. Lin, N. Hiraoka, H.
    Ishii, K. D. Tsuei, and T. J. Yang, Phys. Rev. B 79, 165110 (2009).
    [18] J. M. Chen, J. M. Lee, S. W. Huang, K. T. Lu, H. T. Jeng, C. K. Chen, S.
    C. Haw, T. L. Chou, S. A. Chen, N. Hiraoka, H. Ishii, K. D. Tsuei, and T. J.
    Yang,Phys. Rev. B 82, 094442 (2010) .
    [19] F.-K. Chiang, M.-W. Chu, F. C. Chou, H. T. Jeng, H. S. Sheu, F. R. Chen,
    and C. H. Chen, Phys. Rev. B 83, 245105 (2011) .
    [20] V. Cuartero, J. Blasco, J. Garca, G. Subas, C. Ritter, and J. A. Rodrguez-
    Velamazan, Phys. Rev. B 81, 224117 (2010) .
    [21] F. Aguado, F. Rodrguez, R. Valiente, J.-P. Itie, and M. Han
    and, Phys. Rev.
    B 85, 100101(R) (2012) .
    [22] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B
    71, 224425 (2005) .
    [23] B. H. Kim and B. I. Min, Phys. Rev. B 80, 064416 (2009) .
    [24] V. M. Goldschmidt, Naturwissenschaften 14, 477 (1926) .
    [25] S. Ishiwata, Y. Tokunaga, Y. Taguchi, and Y. Tokura, J. Am. Chem. Soc.
    133, 13818 (2011) .
    [26] K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, Mater.
    Chem. Phys. 112, 1029 (2008) .
    [27] J. M. Chen, J. M. Lee, T. L. Chou, S. A. Chen, S. W. Huang, H. T. Jeng,
    K. T. Lu, T. H. Chen, Y. C. Liang, S. W. Chen, W. T. Chuang, H.-S. Sheu,
    N. Hiraoka, H. Ishii, K. D. Tsuei, E. Huang, C. M. Lin, and T. J. Yang, J.
    Chem. Phys. 133, 154510 (2010) .
    [28] Y. Joly, Phys. Rev. B 63, 125120 (2001) .

    Chapter 5
    [1] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
    Nature (London) 426, 55 (2003).
    [2] A. Mu~noz, M. T. Casais, J. A. Alonso, M. J. Martnez-Lopez, J. L. Martinez,
    and M. T. Fernandez-Daz, Inorg. Chem. 40, 1020 (2001).
    [3] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev.
    Lett. 92, 257201 (2004).
    [4] Y. Tokura, J. Magn. Magn. Mater. 310, 1145-1150 (2007).
    [5] X. Mart, F. Sanchez, J. Fontcuberta, M. V. Garca-Cuenca, C. Ferrater, and
    M. Varela, J. Appl. Phys. 99, 08P302 (2006).
    [6] C. Lu, S. Dong, Z. Xia, H. Luo, Z. Yan, H. Wang, Z. Tian, S. Yuan, T. Wu,
    and J. Liu, Scienti c Reports 3, 3374 (2013).
    [7] R. Kajimoto, H. Mochizuki, H. Yoshizawa, H. Shintani, T. Kimura, and Y.
    Tokura, J. Phys. Soc. Jpn. 74, 2430-2433 (2005).
    [8] B. H. Kim and B. I. Min, Phys. Rev. B 80, 064416 (2009).
    [9] S. Dong, R. Yu, S. Yunoki, J.-M. Liu, and E. Dagotto, Phys. Rev. B 78,
    155121 (2008).
    [10] Y. Y. Chu, H. H. Wu, S. C. Liu, Hsiu-Hau Lin, J. Matsuno, H. Takagi, J. H.
    Huang, J. van den Brink, C. T. Chen, and D. J. Huang, Appl. Phys. Lett.
    100, 112406 (2012).
    [11] M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-
    Muromachi, Phys. Rev. B 75, 144425 (2007).
    [12] K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, Materials
    Chemistry and Physics 112, 1029-1034 (2008).
    [13] M. Nakamura, Y. Tokunaga, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett.
    98, 082902 (2011).
    [14] J. A. Alonso, M. J. Martnez-Lope, and M. T. Casais, Inorg. Chem. 39, 917-
    923 (2000).
    [15] S. Ishiwata, Y. Tokunaga, Y. Taguchi, and Y. Tokura, J. Am. Chem. Soc.
    133, 13818-13820 (2011).
    [16] H. Wadati, J. Okamoto, M. Garganourakis, V. Scagnoli, U. Staub, and Y.
    Yamasaki, Phys. Rev. Lett. 108, 047203 (2012).
    [17] C. C. Hsieh, T. H. Lin, H. C. Shih, C.-H. Hsu, C. W. Luo, J.-Y. Lin, K. H.
    Wu, T. M. Uen, and J. Y. Juang, J. Appl. Phys. 104, 103912 (2008).
    [18] J. M. Chen, J. M. Lee, S. W. Huang, K. T. Lu, H. T. Jeng, C. K. Chen, S.
    C. Haw, T. L. Chou, S. A. Chen, N. Hiraoka, H. Ishii, K. D. Tsuei, and T. J.
    Yang, Phys. Rev. B 82, 094442(2010).
    [19] Y. Joly, Phys. Rev. B 63, 125120 (2001).
    [20] S. C. Haw, J. M. Lee, S. A. Chen, K. T. Lu, F. C. Chou, N. Hiraoka, H. Ishii,
    K. D. Tsuei, C. H. Lee, and J. M. Chen, J. Phys. Soc. Jap. 82, 124801 (2013).
    [21] A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
    [22] F. M. F. de Groot, J. Electron Spectrosc. Relat. Phenom. 67, 529 (1994).
    [23] W. A. Harrison, Electronic Structure and the Properties of Solids (Dover,
    New York USA, 1989).
    [24] D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. J.
    Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S-W. Cheong, J. H. Lee,
    P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett. 98, 217601
    (2007).
    [25] J. M. Chen, Z. Hu, H. T. Jeng, Y. Y. Chin, J. M. Lee, S. W. Huang, K. T.
    Lu, C. K. Chen, S. C. Haw, T. L. Chou, H.-J. Lin, C. C. Shen, R. S. Liu, A.
    Tanaka, L. H. Tjeng and C. T. Chen, Phys. Rev. B 81, 201102(R) (2010).
    [26] Aline Y. Ramos and Helio C. N. Tolentino, Phys. Rev. B 75, 052103 (2007).
    [27] M. Mochizuki, N. Furukawa, and N. Nagaosa, Phys. Rev. Lett. 105, 037205
    (2010).

    Chapter 6
    [1] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura,
    Nature (London) 426, 55 (2003).
    [2] N. Hur, S. Park, P. Sharma, J. Ahn, S. Guha, and S. Cheong, Nature 429,
    392 (2004).
    [3] C. Lu, S. Dong, Z. Xia, H. Luo, Z. Yan, H. Wang, Z. Tian, S. Yuan, T. Wu,
    and J. Liu, Scienti c Reports 3, 3374 (2013).
    [4] M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-
    Muromachi, Phys. Rev. B 75, 144425 (2007).
    [5] H. Schmid, Ferroelectrics 162, 317 (1994).
    [6] F. Zhang and T. Rice, Phys. Rev. B 37, 3759 (1988).
    [7] C. Renner, G. Aeppli, B.-G. Kim, Y.-A. Soh, and S.-W. Cheong, Nature 416,
    518 (2002).
    [8] Y. Y. Chu, H. H. Wu, S. C. Liu, Hsiu-Hau Lin, J. Matsuno, H. Takagi, J. H.
    Huang, J. van den Brink, C. T. Chen, and D. J. Huang, Appl. Phys. Lett.
    100, 112406 (2012).
    [9] J. M. Chen, Z. Hu, H. T. Jeng, Y. Y. Chin, J. M. Lee, S. W. Huang, K. T.
    Lu, C. K. Chen, S. C. Haw, T. L. Chou, H.-J. Lin, C. C. Shen, R. S. Liu, A.
    Tanaka, L. H. Tjeng and C. T. Chen, Phys. Rev. B 81, 201102(R) (2010).
    [10] S. C. Haw, J. M. Lee, S. A. Chen, K. T. Lu, , P. A. Lin, C. H. Lee, M. T.
    Lee, T.W. Pi, Z. Hu and J. M. Chen, J. Chem. Phys. 140, 154503 (2014).
    [11] J.-S. Zhou, J. Alonso, V. Pomjakushin, J. B. Goodenough, Y. Ren, J.-Q. Yan,
    and J.-G. Cheng, Phys. Rev. B 81, 214115 (2010).
    [12] B. Nanda and S. Satpathy, Phys. Rev. B 78, 054427 (2008).
    [13] H. Meskine, H. Konig, and S. Satpathy, Phys. Rev. B 68, 029901(2003).
    [14] A. Y. Ramos, H. C. N. Tolentino, M. M. Soares, S. Grenier, O. Bun~au, Y.
    Joly, F. Baudelet, F. Wilhelm, A. Rogalev, R. A. Souza, N. M. Souza-Neto,
    O. Proux, D. Testemale, and A. Caneiro, Phys. Rev. B 87 (2013).
    [15] J.-S. Zhou and J. Goodenough, Phys. Rev. B 91, 064414(2015).
    [16] N. Zhang, K. F. Wang, S. J. Luo, T. Wei, X. W. Dong, S. Z. Li,J. G. Wan,
    and J. M. Liu, Appl. Phys. Lett. 96, 252902 (2010).
    [17] N. Zhang, Y. Y. Guo, L. Lin, S. Dong, Z. B. Yan, X. G. Li, and J. M. Liu,
    Appl. Phys. Lett. 99, 102509 (2011).
    [18] J. T. Zhang, X. M. Lu, J. Zhou, J. Su, K. L. Min, F. Z. Huang, and J. S.
    Zhu, Phys. Rev. B 82, 224413 (2010).
    [19] P. Mandal, A. Sundaresan, C. N. R. Rao, A. Iyo, P. M. Shirage, Y. Tanaka,
    Ch. Simon, V. Pralong, O. I. Lebedev, V. Caignaert, and B. Raveau, Phys.
    Rev. B 82, 100416 (2010).
    [20] S. C. Haw, J. M. Lee, S. A. Chen, K. T. Lu, F. C. Chou, N. Hiraoka, H.
    Ishii, K. D. Tsuei, C. H. Lee, and J. M. Chen, J. Phys. Soc. Jap. 82, 124801
    (2013).
    [21] T. L. Chou, J. M. Lee, S. A. Chen, S. C. Haw, E. Huang, K. T. Lu, S. W.
    Chen, M. J. Deng, H. Ishii, N. Hiraoka, C. M. Lin, K. D. Tsuei, and J. M.
    Chen, J. Phys. Soc. Jpn. 82, 064708(2013).
    [22] A. Y. Ramos, H. C. Tolentino, N. M. Souza-Neto, J.-P. Itie, L. Morales, and
    A. Caneiro, Phys. Rev. B 75, 052103 (2007).
    [23] J. M. Chen, T. L. Chou, J. M. Lee, S. A. Chen, T. S. Chan, T. H. Chen, K.
    T. Lu, W. T. Chuang, H.-S. Sheu, S. W. Chen, C. M. Lin, N. Hiraoka, H.
    Ishii, K. D. Tsuei, and T. J. Yang, Phys. Rev. B 79, 165110 (2009).
    [24] G. Calestani, F. Orlandi, F. Mezzadri, L. Righi, M. Merlini, and E. Gilioli,
    Inorg. Chem. 53, 8749 (2014).
    [25] F. Jimenez-Villacorta, J. Gallastegui, I. Fina, X. Marti, and J. Fontcuberta,
    Phys. Rev. B 86, 024420 (2012).
    [26] X. Marti, I. Fina, V. Skumryev, C. Ferrater, M. Varela, L. Fabrega, F.
    Sanchez, and J. Fontcuberta, Appl. Phys. Lett. 95, 142903 (2009).
    [27] N. Sharma, A. Das, S. K. Mishra, C. L. Prajapat, M. R. Singh, and S. S.
    Meena, J. Appl. Phys. 115, 213911 (2014).
    [28] F. Y. Liu, J. J. Li, Q. L. Li, Y. Wang, X. D. Zhao, Y. J. Hua, C. T. Wang,
    and X. Y. Liu, Dalton T. 43, 1691 (2014).
    [29] Y. H. Huang, M. Karppinen, N. Imamura, H. Yamauchi, and J. B. Goodenough,
    Phys. Rev. B 76, 174405 (2007).
    [30] F.-K. Chiang, M.-W. Chu, F. Chou, H. Jeng, H. Sheu, F. Chen, and C. Chen,
    Phys. Rev. B 83, 245105 (2011).
    [31] Q. Xu, Y. Sheng, M. Khalid, Y. Cao, Y. Wang, X. Qiu, W. Zhang, M. He, S.
    Wang, S. Zhou, Q. Li, D. Wu, Y. Zhai, W. Liu, P. Wang, Y. B. Xu, and J.
    Du, Sci Rep-Uk 5, 9093 (2015).
    [32] M. Nakamura, Y. Tokunaga, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett.
    98, 082902 (2011).
    [33] S. Ishiwata, Y. Tokunaga, Y. Taguchi, and Y. Tokura, J. Am. Chem. Soc.
    133, 13818 (2011).
    [34] F. Iga, M. Tsubota, M. Sawada, H. B. Huang, S. Kura, M. Takemura, K.
    Yaji, M. Nagira, A. Kimura, T. Jo, T. Takabatake, H. Namatame, and M.
    Taniguchi, Phys. Rev. Lett. 93, 257207 (2004).
    [35] M. W. Haverkort, Z. Hu, A. Tanaka, W. Reichelt, S. V. Streltsov, M. A.
    Korotin, V. I. Anisimov, H. H. Hsieh, H.-J. Lin, C. T. Chen, D. I. Khomskii,
    and L. H. Tjeng, Phys. Rev. Lett. 95, 196404 (2005).
    [36] D. J. Huang, W. B. Wu, G. Y. Guo, H.-J. Lin, T. Y. Hou, C. F. Chang, C.
    T. Chen, A. Fujimori, T. Kimura, H. B. Huang, A. Tanaka, and T. Jo, Phys.
    Rev. Lett. 92, 087202 (2004).
    [37] A. Tebano, C. Aruta, S. Sanna, P. G. Medaglia, G. Balestrino, A. A.
    Sidorenko, R. De Renzi, G. Ghiringhelli, L. Braicovich, V. Bisogni, and N. B.
    Brookes, Phys. Rev. Lett. 100, 137401 (2008).
    [38] Z. C. Fang Hong, Hongyang Zhao, Hideo Kimura and Xiaolin Wang, Appl.
    Phys. Lett. 99 (2011).
    [39] D. Iusan, K. Yamauchi, P. Barone, B. Sanyal, O. Eriksson, G. Profeta, and
    S. Picozzi, Phys. Rev. B 87, 014403 (2013).
    [40] H. Wu, C. F. Chang, O. Schumann, Z. Hu, J. C. Cezar, T. Burnus, N. Hollmann,
    N. B. Brookes, A. Tanaka, M. Braden, L. H. Tjeng, and D. I. Khomskii,
    Phys. Rev. B 84, 155126(2011).
    [41] J. S. Lee, G. A. H. Schober, M. S. Bahramy, H. Murakawa, Y. Onose, R.
    Arita, N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 107, 117401 (2011).
    [42] S. I. Csiszar, M. W. Haverkort, Z. Hu, A. Tanaka, H. H. Hsieh, H. J. Lin, C.
    T. Chen, T. Hibma, and L. H. Tjeng, Phys. Rev. Lett. 95, 187205 (2005).
    [43] E. Arenholz, G. van der Laan, R. V. Chopdekar, and Y. Suzuki, Phys. Rev.
    B 74, 094407 (2006).
    [44] M. W. Haverkort, S. I. Csiszar, Z. Hu, S. Altieri, A. Tanaka, H. H. Hsieh,
    H.-J. Lin, C. T. Chen, T. Hibma, and L. H. Tjeng, Phys. Rev. B 69,
    020408(R)(2004)
    [45] N. Hollmann, Z. Hu, T. Willers, L. Bohaty, P. Becker, A. Tanaka, H. H. Hsieh,
    H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. B 82, 184429 (2010).
    [46] P. Kuiper, B. G. Searle, P. Rudolf, L. H. Tjeng, and C. T. Chen, Phys. Rev.
    Lett. 70, 1549 (1993).
    [47] A. Scholl1, J. Stohr, J. Luning, J. W. Seo, J. Fompeyrine, H. Siegwart, J.-
    P. Locquet, F. Nolting, S. Anders, E. E. Fullerton, M. R. Scheinfein, H. A.
    Padmore, Science 287, 1014 (2000).
    [48] A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
    [49] F. De Groot, J. Electron Spectrosc. 67, 529 (1994).
    [50] S. X. Lin, X. G. Fang, A. H. Zhang, X. B. Lu, J. W. Gao, X. S. Gao, M.
    Zeng, and J. M. Liu, J. Appl. Phys. 116, 163705 (2014).
    [51] K. Yoshimatsu, K. Nogami, K. Watarai, K. Horiba, H. Kumigashira, O.
    Sakata, T. Oshima, and A. Ohtomo, Phys. Rev. B 91, 054421 (2015).
    [52] J. R. Hayes and A. P. Grosvenor, J. Phys.: Condens. Matter 23, 465502
    (2011).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE