研究生: |
林育德 Lin, Yu-De |
---|---|
論文名稱: |
表面電漿子傳遞行為之控制 Control of Surface Plasmon Polariton Propagation |
指導教授: |
黃承彬
Huang, Chen-Bin |
口試委員: |
嚴大任
Yen, Ta-Jen 李瑞光 Lee, Ray-Kuang 陳國平 Chen, Kuo-Ping |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 表面電漿子 |
外文關鍵詞: | Surface Plasmon Polariton |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用金膜上的半刺穿結構來對表面電漿子做轉彎及聚焦的控制,分別利用不同結構來達成我們的目的,但是設計結構的方法相同,此方法稱為Surface electromagnetic wave holography(SWH)。核心概念是惠更斯-菲涅耳原理(Huygens–Fresnel principle),當表面電漿子經過結構時會形成第二個波源,而利用這些新形成的波源產生干涉進而達到我們轉彎以及聚焦的目的。
In this paper, we can control propagation of surface plasmon polariton by metasurface we designed. We use FIB to etch our metasurface on gold thin film, different structure can control the propagation of SPPs. Using a method called surface electromagnetic wave holography method. This method is based on the Huygens-Fresnel principle. SPPs are scattered by our metasurface that we designed and interfere with each other to change the propagation of SPPs.
[1] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philosophical Magazine, vol. 4, pp. 396-402, Jul-Dec 1902.
[2] U. Fano, "Some theoretical considerations on anomalous diffraction gratings," Physical Review, vol. 50, pp. 573-573, Sep 1936
[3] U. Fano, "On the anomalous diffraction gratings II," Physical Review, vol. 51, pp. 288-288, Feb 1937.
[4] U. Fano, "On the theory of the intensity anomalies of diffraction," Annalen Der Physik, vol. 32, pp. 393-443, Jul 1938.
[5] U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," Journal of the Optical Society of America, vol. 31, pp. 213-222, Mar 1941.
[6] R. H. Ritchie, "Plasma losses by fast electrons in thin films," Physical Review, vol. 106, pp. 874-881, 1957.
[7] H. A. Atwater, "The promise of plasmonics," Scientific American, vol. 296, pp. 56- 63, Apr 2007.
[8] K. T. Gahagan and G. A. Swartzlander, "Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap," Journal of the Optical Society of America B-Optical Physics, vol. 16, pp. 533-537, Apr 1999.
[9] M. E. J. Friese, J. Enger, H. RubinszteinDunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Physical Review A, vol. 54, pp. 1593-1596, Aug 1996.
[10] Mathieu L Juan, M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nature Photonics, vol. 5, pp. 349–356, May 2011.
[11] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature, vol. 394, pp. 348-350, Jul 1998.
[12] W.-Y. Tsai, J.-S. Huang, and C.-B. Huang, "Selective trapping or rotation of isotropic dielectric micro-particles by optical near field in a plasmonic Archimedes spiral, " Nano Lett. 14, 547-552, Jan 2014.
[13] Cai, W., A.P. Vasudev, and M.L. Brongersma, "Electrically controlled nonlinear generation of light with plasmonics," Science, vol. 333, pp. 1720-1723, Sep 2011.
[14] Pu, Y., et al., "Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation," Physical Review Letters, vol. 104, pp. 207402, May 2010.
[15] Zhang, Y., et al., "Three-dimensional nanostructures as highly efficient generators of second harmonic light," Nano Letters, vol. 11, pp. 5519-5523, Nov 2011.
[16] Michele Celebrano, Xiaofei Wu, Milena Baselli, Swen Großmann, Paolo Biagioni, Andrea Locatelli, Costantino De Angelis, Giulio Cerullo, Roberto Osellame, Bert Hecht, Lamberto Duò, Franco Ciccacci1 and Marco Finazzi, "Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation," Nature Nanotechnology, vol. 10, pp. 412-417, Apr 2015.
[17] S. A. Maier, P. G. Kik, and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Applied Physics Letters, vol. 81, pp. 1714-1716, Aug 2002.
[18] Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Physical Review B, vol. 78, 153111, Mar 2010.
[19] By Wenshan Cai, Wonseok Shin, Shanhui Fan, and Mark L. Brongersma, "Elements for plasmonic nanocircuits with three-dimensional slot waveguides," Adv. Mater, vol. 22, pp. 5120-5124, Sep 2010.
[20] J. Lin, J. P. B. Mueller, Q. Wang, G. H. Yuan, N. Antoniou, X. C. Yuan, et al., "Polarization-controlled tunable directional coupling of surface plasmon polaritons," Science, vol. 340, pp. 331-334, Apr 2013.
[21] Q. Xu, X. Q. Zhang, Q. L. Yang, C. X. Tian, Y. H. Xu, J. B. Zhang, H. W. Zhao, Y. F. Li, C. Ouyang, Z. Tian, J. Q. Gu, X. X. Zhang, J. G. Han, and W. L. Zhang, “Polarization-controlled asymmetric excitation of surface plasmons,” Optica 4, 1044–1051 (2017).
[22] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, "Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface," Light-Science & Applications, vol. 3, p. 4, May 2014.
[23] F. Bouchard, I. De Leon, S. A. Schulz, J. Upham, E. Karimi, and R. W. Boyd, "Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges," Applied Physics Letters, vol. 105, p. 4, Sep 2014.
[24] J. B. Sun, X. Wang, T. B. Y. Xu, Z. A. Kudyshev, A. N. Cartwright, and N. M. Litchinitser, "Spinning Light on the Nanoscale," Nano Letters, vol. 14, pp. 2726-2729, May 2014.
[25] C.-F. Chen, C.-T. Ku, Y.-H. Tai, P.-K. Wei, H.-N. Lin, and C.-B. Huang, "Creating optical near-field orbital angular momentum in a gold metasurface," Nano Lett., vol. 15, pp.2746-2750, Mar 2015.
[26] Mohammadreza Khorasaninejad, Wei Ting Chen, Robert C. Devlin, Jaewon Oh, Alexander Y. Zhu, Federico Capasso, "Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging, " Science, vol. 352, pp. 1190-1194, Jun 2016.
[27] Y. H. Chen, J. X. Fu, and Z. Y. Li, Opt. Express 19, 23908(2011).
[28] Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, Light Sci. Appl. 1,e26 (2012).
[29] Y. H. Chen, M. Q. Zhang, L. Gan, X. Y. Wu, L. Sun, J. Liu, J.Wang, and Z. Y. Li, Opt. Express 21, 17558 (2013).
[30] T. Zentgraf, T. P. Meyrath, A. Seidel, S. Kaiser, H. Giessen, C. Rockstuhl, et al., "Babinet's principle for optical frequency metamaterials and nanoantennas," Physical Review B, vol. 76, p. 4, Jul 2007.
[31] Y. G. Chen, Y. H. Chen, and Z. Y. Li, "Direct method to control surface plasmon polaritons on metal surfaces", OPTICS LETTERS, January 15, 2014 / Vol. 39, No. 2
[32] L. Li, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, Nano Lett.11, 4357 (2011).
[33] 邱國斌、蔡定平, 金屬表面電漿簡介, 物理雙月刊二十八卷二期 P472-485. 民國89年10月