簡易檢索 / 詳目顯示

研究生: 張宸銘
論文名稱: 基於解析目標傳遞法之多領域分散式 最佳化設計
Multi-disciplinary Distributed Design Optimization based on Analytical Target Cascading
指導教授: 瞿志行
口試委員: 詹魁元
蘇哲平
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: 協同設計分散式設計賽局理論
外文關鍵詞: ATC, Kriging Model
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於經濟全球化與產業高度分工,現代產品開發成為由不同的團隊,以分散的方式共同完成。如何在資訊不完全通透的情形下,進行有效率的設計最佳化,仍缺乏有效的做法。因此建構符合協同產品開發環境的分析模式,解決分散式決策環境下的設計衝突問題,遂成為本研究的主要目標。首先延伸解析目標傳遞法(Analytical Target Cascading, ATC)系統架構,進行多領域的設計協商,加入子系統目標需求模式,達成分散式多目標規劃,使參與協商單位獲得較大的決策彈性、自主性及獨立性。接著整合克利金法(Kriging Model),以改善複雜問題的協商過程中, ATC迭代次數過多或求解時間過長的問題。並加入樣本群更新,減少繁複函數的計算次數,以加速協商的過程。本研究亦利用兩種不同的賽局模式,解決各協同設計部門,在考量各自目標下產生的決策衝突,並根據分析結果提出較佳的決策模式建議。最後將提出的方法分別應用於氣流感測器設計、傳動裝置齒輪盒協同公差分配、水密門設計及壓力容器設計等工程問題,驗證方法的可行性,顯示本研究的實用價值。


    目錄 摘要 I Abstract II 誌謝辭 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與方法 2 1.3 研究架構 3 第二章 文獻回顧 6 2.1 最佳化設計 6 2.1.1 最佳化設計問題概述 6 2.1.2 最佳化設計問題分類 7 2.1.3 克利金模型(Kriging Model)概述 8 2.2 多領域設計最佳化 9 2.2.1 多領域設計最佳化問題概述 9 2.2.2 多領域設計最佳化問題發展 9 2.3 賽局理論 11 2.3.1 賽局理論模式分類 11 2.3.2 賽局理論於設計問題發展 12 2.4 文獻回顧總結 14 第三章 解析目標傳遞法 16 3.1 解析目標傳遞法概述 16 3.1.1 定義及解構問題 17 3.1.2 數學模式建構 18 3.1.3 權重更新理論 21 3.1.4 權重更新法流程 24 3.2 解析目標傳遞法數學範例 25 第四章 解析目標傳遞法延伸應用 29 4.1 考量子系統目標需求模式 29 4.2 考量子系統目標需求模式範例 30 4.3 ATC結合Kriging Model 33 4.3.1 ATC結合Kriging Model概述 33 4.3.2 Kriging Model之概念 33 4.3.3 Kriging Model樣本群更新 36 4.3.4 ATC結合Kriging Model法之流程 39 4.4 ATC結合克利金模型範例 41 Example 3 41 第五章 子系統應用賽局理論模式 43 5.1 子系統應用賽局理論模式概述 43 5.2 非合作賽局模式 43 5.3 非合作賽局範例 46 5.4 先後決策賽局模式 50 5.5 先後決策賽局範例 52 5.6 賽局理論總結 59 第六章 案例實作 60 6.1 Case 1 : 氣流感測器 60 6.1.1 氣流感測器問題描述 60 6.1.2 ATC 模式求解 62 6.1.3 氣流感測器設計結果與分析 63 6.2 Case 2 : 傳動裝置齒輪盒協同公差分配 64 6.2.1 傳動裝置齒輪盒協同公差分配問題描述 64 6.2.2 考量子系統目標需求模式 67 6.2.3 考量子系統目標需求模式結果與分析 68 6.2.4 ATC結合Kriging Model 模式 68 6.2.5 ATC結合Kriging Model 模式結果與分析 70 6.3 Case 3 : 水密門設計 71 6.3.1 水密門設計問題描述 71 6.3.2 ATC結合Kriging Model 模式 77 6.3.3 水密門設計結果與分析 78 6.4 Case 4 : 壓力容器設計 81 6.4.1 壓力容器問題描述 81 6.4.2 非合作賽局模式 83 6.4.3 先後決策賽局模式 84 6.4.4 壓力容器設計結果與分析 87 第七章 結論與未來研究方向 88 7.1 結論 88 7.2 未來研究方向 89 參考文獻 90

    參考文獻
    [1] William, C.R. and Vincent, A.C, (2000) “Managing digital libraries for computer- aided design,” Computer Aided Design, 32(30): 119-132.
    [2] Cutkosky, M.R., Tanenbaum, J.M. and Glicksman, J. (1996) “Madefast: collaborative engineering over the internet,” Communications of the ACM, 39(9): 78-87.
    [3] Willaert, S.S.A., de Graaf, R. and Minderhoud, S. (1998) “Collaborative engineering: A case study of concurrent engineering in a wider context,” Journal of Engineering and Technology Management, 15: 87-109.
    [4] Noori, H. and Lee, W.B. (2004) “Collaborative design in a networked Enterprise: The case of the telecommunications industry,” International Journal of Production Research, 42(15): 3041-3054.
    [5] Chang, C.J. and Chu, C.H. (2004) “Collaborative product development in taiwan PCB industry,” Journal of Electronic Business Management, 2(2): 108-116.
    [6] Marko, S. and Janez, G., (2002) “Concurrent engineering in small companies,” International Journal of Machine Tools & Manufacture, 42: 417-426.
    [7] 陳銘崑、廖一青,民國九十三年,「OEM接單型態下電子化協同設計參考模型之研究」,Journal of the Chinese Institute of Industrial Engineers, 21(4): 395-408.
    [8] Chu, C.H., Cheng, H.C. and Chang, C.J. (2005) “Collaborative product development for the new economics - An empirical study of methods and enabling functions,” CIRP Design Seminar, Shanghai, China.
    [9] Twigg, D. (1998) “Managing product development within a design chain,” International Journal of Operations and Production Management, 18(5): 508-524.
    [10] Blackhurst, J., Wu, T. and Grady, P.O., (2005) “PCDM: A decision support modeling methodology for supply chain, product and process design decisions,” Journal of Operations Management, 23: 325-343.
    [11] Giannini, F., Monti, M., Biondi, D., Bonfatti, F., and Monari, P.D., (2002) “A modelling tool for the management of product data in a co-design environment,” Computer Aided Design, 34(12): 1063-1073.
    [12] Tay, F.E.H. and Roy, A. (2003) “CyberCAD: a collaborative approach in 3D-CAD technology in a multimedia-supported environment,” Computers in Industry, 52(2): 127-145.
    [13] Chu, C.H., Cheng, C.Y. and Wu, C.W. (2006) “Applications of the web-based collaborative visualization in distributed product development,” Computers in Industry, 57(3): 272-282.汹
    [14] Krige, D. G. (1951) A statistical approach to some mine valuation and allied problems on the Witwatersrand. Master's thesis, University of Witwatersrand.
    [15] Cressie, N. (1990) “The origin of Kriging,” Mathematical Geology, Mathematical Geology, 22(3): 239-252.
    [16] Sacks, J., Schiller, S. B., and Welch, W. J. (1989) “Design for computer experiments,” Technometrics, 31: 41-47.
    [17] Sacks, J., Welch, W. J., Mitchell, W. J., and Wynn, H. P. (1989) “Design and analysis of computer experiments,” Statistical Science,4(4) : 409-435.
    [18] Booker, A. J., Dennis, J. E., Frank, P. D., Sera_ni, D. B., and Torczon, V. (1997) “Optimization using surrogate objectives on a helicopter test example,” tech. rep., Applied Research Technology.
    [19] Park, K., Oh, P.K. and Lim, H. (2006) “The application of the CFD and Kriging method toan optimization of heat sink,” International Journal of Heat and Mass Transfer, 49: 3439-3447.
    [20] Sakata, S., Ashida, F. and Zako, M. (2003) “Eigenfrequency optimization of sti_ened plate using Kriging estimation,” Computational Mechanics, 31: 409-418.
    [21] Liu, C.-H. and Chan, K.-Y. (2008) “Reliability-based design of a pressure tank under random and stochastic environments,” ASME International Design Engineering Technical Conference, 3-6.
    [22] Rabeau, S., Depince, P. and Bennis, F. (2007) “Collaborative optimization of complex system: a multidisciplinary approach,” International Journal of Interactive Design and Manufacturing, 1: 209-218
    [23] Cramer, E., Dennis, J. Jr., Frank, P., Lewis, R., Shubin, G., (1994) “Problem formulation for multidisciplinary optimization,” SIAM Journal on Control and Optimization, 4(4 ): 754–776.
    [24] Seller, R., Batill, S., Renaud, J. (1996) “Response surface based, concurrent subspace optimization for multidisciplinary system design,” 34th AIAA Aerospace Sciences Meeting, 15-18.
    [25] Braun, R., (1996) Collaborative optimization: An architecture for large-scale distributed design. Ph.D. thesis, Stanford University, May.
    [26] Sobieszczanski-Sobieski J, Haftka R.T. (1996) “Multidisciplinary aerospace design optimization: Survey of recent developments,” AIAA Paper AIAA-96-0711
    [27] Braun, R.D., Gage, P., Kroo, I., (1996) “Implementation and performance issues in collaborative optimization,” AIAA/NASA/ISSMO, Symposium on Multidisciplinary Analysis and Optimization, 6th, Bellevue, WA, Sept. 4-6,AIAA Paper 96-4017.
    [28] Sobieszczanski-Sobieski, J., Agte, J., Sandusky,R.Jr., (1998) “Bi-level integrated system synthesis,” Symposium on Multidisciplinary Analysis and Optimization, 7th, St. Louis, MO, 2-4.
    [29] Michelena, N.F., Papalambros, P.Y., Park, H.A., and Kulkarni, D., (1999) “Hierarchical overlapping coordination for large-scale optimization by decomposition, ” AIAA J., 37: 890–896.
    [30] Kim, H.M. (2001) Target cascading in optimal system design. Ph.D. thesis, University of Michigan.
    [31] Michelena, N. F., Park, H.A. and Papalambros P.Y. (2003) “Convergence properties of analytical target cascading. ” AIAA Journal, 41(5): 897–905.
    [32] Michalek, J.J. and Papalambros, P.Y. (2005) “An efficient weighting update method to achieve acceptable consistency deviation in analytical target cascading. ” Journal of Mechanical Design, 127(2): 206–214.
    [33] Gibbons, R. (1992) Game theory for applied economists. Princeton University Press.
    [34] Lewis, K. and Mistree, F. (1998) “Collaborative, sequential and isolated decisions in design,” ASME Journal of Mechanical Engineering, 120(4): 643-652.
    [35] 鄭漢中、瞿志行,民國九十四年,「協同產品開發的保護帶理論:以模具開發為例」, 模具技術成果暨論文發表會,台北。
    [36] Vincent, T. (1983) “Game theory as a design tool,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 105: 165-170.
    [37] Rao, S. S. (1987) “Game-theory approach for multi-objective structural optimization,” Computers and Structures 25(1): 119-127.
    [38] Rao, S. S., Venkayya, V. B., and Khot, N. S. (1988) “Game-theory approach for the integrated design of structures and controls,” AIAA Journal, 26(4): 463–469.
    [39] Dhingra, A. K. and Rao, S. S. (1995) “A cooperative fuzzy game-theoretic approach to multiple-objective design optimization,” European Journal of Operational Research, 83(3): 547–567.
    [40] Badhrinath, K. and Rao, J. (1996) “Modeling for concurrent design using game theory formulations,” Concurrent Engineering: Research and Applications, 4(4): 389-399.
    [41] Chen, L. and Li, S. (2002) “A computerized team approach for concurrent product and process design optimization,” Computer-Aided Design, 34(1): 57–69.
    [42] Xiao, A., Choi, H.J., Allen, J.K., Rosen, D.W. and Mistree, F. (2002) “Collaborative decision making across digital interfaces,” ASME Design Engineering Technical Conference 28th, Montreal, Canada.
    [43] Lewis, K. and Mistree, F. (1997) “Modeling interactions in multidisciplinary design: A game theoretic approach,” AIAA Journal, 35(8): 1387–1392.
    [44] Xiao, A., Zeng, S., Allen, J.K., Rosen, D.W., and Mistree, F. (2005) “Collaborative multidisciplinary decision making using game theory and design capability indices,” Engineering Design 16: 57-75.
    [45] Allison, J.T., Kokkolaras, M., Papalambros, P.Y., (2007) “On selecting single-level formulations for complex system design optimization,” ASME Journal of Mechanical Design 129, 898.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE