研究生: |
康琨杰 Kun-Chieh Kang |
---|---|
論文名稱: |
以微波加熱化學氣相沉積法在鈉玻璃基板上成長奈米碳管 Synthesis of carbon nanotubes on sodium glass using microwave-heated CVD |
指導教授: |
黃金花
Jin-Hua Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 奈米碳管 、化學氣相沉積法 |
外文關鍵詞: | carbon nanotube, CVD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從奈米碳管(carbon nanotubes :CNTs)在1991年被Iijima博士 發現後,奈米碳管的製造和特性即引起很大的研究興趣。因此也就衍生了許多新的應用。由於奈米碳管具低起始電場與高電流密度的特性,故目前以應用於場發射顯示器(CNTs-FED)為主。本實驗的目的是找出較佳的成長條件,以符合場發射顯示器的應用。
本實驗將網印銀電極過後的Na玻璃基板利用E-gun蒸鍍機,將不同鎳膜厚度蒸鍍於基板上,以微波加熱化學氣相沉積法(Microwave Heating chemical vapor deopsition:MH-CVD)成長碳奈米材料,以期能得到較佳場發射特性。藉由SEM和拉曼光譜分析碳膜的結構,接著再進行場發射特性量測,所使用的量具為Keitherley 237。
本實驗主要在Na玻璃基板上成長奈米碳管,由於必須克服Na玻璃基板材料本身軟化點約在666℃的問題,故必須要在低溫成長奈米碳管。在混有有機鎳銀電極之Na玻璃基板上,再額外鍍上15 nm鎳,以590℃成長60分鐘時,起始電場為0.56 V/μm,最大電流密度為7.225 mA/cm2;而在無有機鎳銀電極之Na玻璃基板上,鍍上100 nm的鉻和70 nm的鎳,以590℃成長40分鐘時,起始電場為0.56 V/μm,最大電流密度為10.683 mA/cm2,相信本實驗所得之實驗結果,對場發射顯示器之發展有所貢獻,使得場發射顯示器之應用能獲得實現。
[1] S.Iijima, Nature 354 (1991) 56.
[2] Ebbesen, T. W.; Ajayan, P. M. Large-scale of carbon nanotubes. Nature 1992, 358, 16.
[3] Journet, C.; Master,W.K.; Bernier,P.; Loiseau,A.; Chapelle, M. L. d. I; Lefrant, S.; Deniard, P.; Lee, R.;Fischer, J. E. Large-scale of single wall carbon nanotubes by electric arc technique. Nature 1997, 388, 756-758.
[4] Thess, A.;Lee, R.;Nikdaev, P.; Dai, H.;Petit, P.; Robert, J.;Xu, C.;Lee, Y. H.; Kim. S. G.; Rinzler, A. G.; Colbert, D. T. Scuseria, G. E.;Tomaken, D.;Fisher, J. E.;Smalley, R. E. Crystalline Ropes of metallic carbon nanotubes. Science 1996, 273, 483-487.
[5] Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal,M. P.; Provencio, P. N. Synthesis of large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, 1105.
[6] Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties . Science 1999, 283, 512-514.
[7] Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett.2000, 77(17), 2767-2769.
[8] Su, M.; Zheng, B.; Liu, J. A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity .Chem. Phys. Lett.2000, 322, 321-326.
[9] Seraphin, S.and Zhou, D., Appl. Phys. Lett. 1994, 64, 2087.
[10] Saito, Y., Kawabata, K., Okuda, M., J. Phys. Chem., 1995, 99, 16076.
[11] C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee,W.B. Choi, N.S. Lee, K.-S. Park, J.M. Kim, Chem. Phys. Lett., tobe printed in 1999.
[12] K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, . Synthetic Metals 77 1996 31.
[13] L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Appl. Phys. Lett. 72. 1998 3437.
[14] S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai,Science 283, 512 (1999).
[15] (a)J. Kong, H. T. Soh, A. Cassell, C. F. Quate, and H. Dai, Nature (London)395, 878 (1998); (b) N. R. Franklin, Y. Li, R. J. Chen, A. Javey, and H. Dai, Appl. Phys. Lett. 79, 4571 (2001).
[16] B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, Y. Zhang, G. Ramanath, and P. M. Ajayan, Nature (London) 416, 495 (2002).
[17] G. Gu, G. Philipp, X. Wu, M. Burghard, A. M. Bittner, and S. Roth, Adv.Functional Mater. 11, 295 (2001).
[18] Iijima, S. and Ichihashi, T., Nature, 1993, 363, 603.
[19] "High Resolution TEM Observations of Single-Walled Carbon Nanotubes", Tara Spires and R. Malcolm Brown, Jr. Department of Botany, The University of Texas at Austin, Austin,Tx., 78713 [1996]
[20] Jeroen W. G. Wilder; Liesbeth C. Venema; Andrew G. Rinzler; Richard E. Smalley; Cees Dekker; Nature 391, 6662, 59-62 (1998)
[21] Teri Wang Odom; Jin-Lin Huang; Philip Kim; Charles M. Lieber; Nature 391, 6662, 62-64 (1998).
[22] "Crystalline Ropes of Metallic Carbon Nanotubes", Science 273, 483 (1996), Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo Scuseria, David Tomek, John E. Fischer, Richard E. Smalley
[23] Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT)", by Guanghua Gao, Tahir Cagin*, and William A. Goddard III, [1997]
[24] David Tomànek
[25] C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires", Physics Today, p22, May (1999)
[26] Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT)", by Guanghua Gao, Tahir Cagin*, and William A. Goddard III, [1997]
[27] Stefan Frank et al., Science 280 1744 (1998)
[28] "Fractional Quantum Conductance in Carbon Nanotubes", cond-mat/9908154, Phys. Rev. Lett. 84, 1974 (2000), Stefano Sanvito, Young-Kyun Kwon, David Tomek, and Colin J. Lambert.
[29] Stefan Frank et al., Science 280 1744 (1998)
[30] Lecture given at Michigan State University by Phaedon Avouris, a nanotube researcher at the IBM labs. [2000]
[31] "Thermal Conductivity of Carbon Nanotubes", by Jianwei Che, Tahir Cagin, and William A. Goddard III
[32] "Nanotubes: Mechanical and Spectroscopic Properties" .5em E. Herndez1 and Angel Rubio2 [1999]
[33] Min-Feng Yu, Bradley S. Files, Sivaram Arepalli, Rodney S. Ruoff, Phys. Rev. Lett. 84, 5552 (2000).
[34] Otto Zhou, Hideo Shimoda, Bo Gao, Soojin Oh, Les Fleing, and Guozhen Yue, Acc. Chem. Res 2002, 35, 1045-1053.
[1] Cheol Jin Lee, Jeunghee Park, Seungwu Han, Jisoon Ihm, Chem. Phys. Lett . 337 (2001) 398.
[2] In Taek Han, Ha Jin Kim, Young-Jun Park, Naesung Lee, Jae Eun Jang, Jung Woo Kim, Jae Eun Jung, and Jong Min Kim, Appl. Phys.Lett.81 (2002) 2070.
[3] K. B. K. Teo, M. Chhowalla, S. B. Lee, D. G. Hasko, H. Ahmed, G. A. J.Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, and D. Pribat, Proceedingsof the 2001 Materials Research Society fall meeting, Boston, 2001 (in press).
[4] Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM, Appl. Phys.Lett.75 (1999) 3129.
[5] Juntao Li, Wei Lei, Xiaobing Zhang, Xuedong Zhou, Qilong Wang, Yuning Zhang, Baoping Wang, Applied Surface Science 220 (2003) 96.
[6] Deuk Seok Chung, S.H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J.W. Kim, J.E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, and Jong-Min Kim, Appl. Phys.Lett.81 (2002) 4045.
[7] J.E. Jung, Y.W. Jin, J.H. Choi, Y.J. Park, T.Y. Ko, D.S. Chung, J.W. Kim, J.E. Jang, S.N. Cha, W.K. Yi, S.H. Cho, M.J. Yoon, C.G. Lee, J.H. You, N.S. Lee, J.B. Yoo, J.M. Kim, Physica B 323 (2002) 71.
[8] T. J. Vink, M. Gillies, J. C. Kriege, and H. W. J. J. van de Laar, Appl. Phys.Lett.83 (2003) 3552.
[9] Hiroki Ago, Kazuhiro Murata, Motoo Yumura, Junko Yotani, and Sashiro Uemura, Appl. Phys.Lett.82 (2003) 811.
[10] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys. 45, 487 (1973).
[11] Chernozatonskii LA, Gulyaev YV, Kosakovskaya ZY, Sinitsyn NI, Torgashov GV, Zakharchenko YF, Fedorov EA, Valchuk VP. Chem. Phys. Lett. 233 (1995) 63.
[12] Chernozatonskii LA, Kosakovskaya ZJ, Kiselev AN, Kiselev NA. Chem. Phys. Lett. 228 (1994)1.
[13] De Heer WA, Chatelain A, Ugarte D. Science 270 (1995) 1179.
[14] Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW,and an Chang RPH. A nanotube-based field-emission flat panel display. Appl Phys Lett 1998;72(22):2912–3.
[15] Saito Y, Hamaguchi K, Uemura S, Uchida K, Tasaka Y, Ikazaki F al. Field emission from multi-walled carbon nanotubes and its application to electron tubes. Appl Phys A 1998;67(1):95–100.
[16] Dimitrijevic S, Withers JC, Mammana VP, Monteiro OR,carbon nanotubes and Ta–C coated nanotubes. Appl Phys Lett 1999;67(1):95-100.
[17] Jean-Marc Bonard, Mirko Croci, Christian Klinke, Ralph Kurt, Olivier Noury, Carbon 40 (2002) 1715-1728.
[18] Douglas A, Skoog and James J. Leary, Principles of instrumental analysis, Fourth edition, Harcourt. Brace Joranovich,1992.
[19] Hiura, H.,Ebbesen, T.W., Tanigaki, H., Chem. Phys. Lett. 202 (1993) 509.
[20] P. C. Eklund, J. M. Holden and R. A. Jishi,Carbon ,33, 959 (1995).
[1] Thomas W. Ebbesen, Carbon nanotubes preparation and properties, CRC press, 1997.
[2] R. Saito and G .Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press, 1998.
[3] M. Endo, S. Iijima and M. S. Dresselhaus, Carbon nanotubes, Pergamon, 1996.
[4] Peter J.F. Harris, Carbon nanotubes and related structure, Cambridge University Press, 1999.
[5] M. S. Dresseliiaus, G. Dresselhaus and P. C. Eklund, Science of fullerences and carbon nanotubes, Academic Press, 1996.
[6] M. S. Dresselhaus, Carbon nanotubes : synthesis, structure, properties, and appli- cation, Springer, 2000.
[7] Z. F. Ren, Z. P. huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N. Pro- vencio, Science 282, 1105(1998).
[8] J. C. Charlier, A. D. Vita, X Blasé and Roberto Car, Science 275, 647(1997).
[9] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, R. A. Zhao and G. Wang, Science 274, 1701(1996).
[10] P. G. Collins, A. Zetti, H. Bando, A. Thess and R. E. Smalley, Science 278, 100(1997).
[11] M. S. Dresselhaus, Science 292, 650(2001).
[12] G. Che, B. B. Lakshmi, E. R. Fisher and C. R. Martin, Nature 393, 346(1998).
[13] J. H. Hafner, C. L. Cheung and C. M. Lieber, Nature 398, 761(1999).
[14] K. B. K. teo, M Chhowalla, G. A. J. Amaratunga, W. I. Milne, D. G. Hasko, G. Pirio, P. Legagneux, F. Wyczisk and D. Pribat, Appl. Phys. Lett, 79, 1534(2001).
[15] E. Yenilmez, Qian Wang, R. J. Cjen, D. wang and Hongjie Dai, Appl. Phys. Lett, 80, 2225(2002).
[16] M. P. Siegal, D. L. Overmyer and P. P. Provencio, Appl. Phys. Lett, 80, 2171(20 02).
[17] C. L. Tsai, C. F. Chen and C. L. Lin, Appl. Phys. Lett, 80, 1821(2002).
[18] Y. Y. Wei, G. Eres, V. I. Merkulov and D. H. Lowndes, Appl. Phys. Lett, 78, 1394(2001).
[19] L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, Appl. Phys. Lett, 72, 3437(19 98).
[20] A. Cao, Xi. Zhang, C. Xu, J. Liang and D. Wu, Appl. Phys. Lett, 79, 1252(2001).
[21] W. Hu, D. Gong, Z. Chen, L. Yuan, K. Saito and P. Kichambare, Appl. Phys. Lett, 79, 3083(2001).
[22] Y. S. Han, J. K. Shin and S. T. Kim, J. Appl. Phys, 90, 5731(2001).
[23] N. R. Franklin, Y. Li, R. J. Chen, A. Javey and Honglie Dai, Appl. Phys. Lett, 79, 4571(2001).
[24] J. Y. Lao, W. Z. Li, J. G. Wen and Z. F. Ren, Appl. Phys. Lett, 80, 500(2002).
[25] M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura and E. Ota, Appl. Phys. Lett, 67, 2477(1995).
[26] Y. Avigal and R. Kalish, Appl. Phys. Lett, 78, 2291(2001).
[27] Y. Y. Wei, G. Eres, V. I. Merkulov and D. H. Lowndes, Appl. Phys. Lett, 78, 1394(2001).
[28] Y. C. Choi, Y. M. Shin, Y. H. Lee, B. S. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, Appl. Phys. Lett, 76, 2367(2000).
[29] L. F. Sun, S. S. Xie, J. M. Mao, Z. W. Pan, B. H. Chang, W. Y. Zhou, G. Wang and L. X. Qian, Appl. Phys. Lett, 76, 828(2000).
[30] A. A. Setlur, S. P. Doherty, J. Y. Dai and R. P. H. Chang, Appl. Phys. Lett, 76, 300 8(2000).
[31] J .M. Mao, L. F. Sun, L. X. Qian, Z. W. Pan, B. H. Chang, W. Y. Zhou and G. Wa- ng, Appl. Phys. Lett, 72, 3297(1998).
[32] S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu and H. C. Shih, Appl. Phys. Lett, 74, 197(1999).
[33] T. Iwasaki, T. Motoi and T. Den, Appl. Phys. Lett, 75, 2044(1999).
[34] J. S. Suh and J. S. Lee, Appl. Phys. Lett, 75, 2047(1999).
[35] H. M. Cheng, F. Li, G. Su, X. Sun and M. S. Dresselhaus, Appl. Phys. Lett, 72, 3282(1998).