研究生: |
王孝祖 Wang, Hsiao-Tsu |
---|---|
論文名稱: |
利用X光光譜來探討超導體K2-xFe4+ySe5及電荷密度波單晶材料Sr3Ir4Sn13之電子與原子結構研究 The electronic and atomic structure of superconductor K2-xFe4+ySe5 and charge density wave single crystal Sr3Ir4Sn13 investigated by x-ray spectroscopy |
指導教授: |
吳茂昆
Wu, Maw- Kuen 彭維鋒 Pong, Way-Faung |
口試委員: |
張石麟
林宏碁 蘇雲良 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | X光光譜 、同步輻射 、鐵基超導 、電荷密度波 |
外文關鍵詞: | X-ray spectroscopy, Synchrotron radiation, Fe-based superconductor, Charge density wave |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用X光吸收近邊結構(XANES)、延伸X光吸收精細結構(EXAFS)、X光發射能譜 (XES)和非彈性共振X光散射能譜術(RIXS)來研究以下兩個主題。在第一部分,利用製程中不同的冷卻溫度(820 0C和750 0C)來合成,不同的超導體K1.9Fe4.2Se5 (SC-820和SC-750)與非超導體K2Fe4Se5 (NS-820和NS-750)。Fe K-edge EXAFS證明在超導的樣品(SC)中的鐵缺陷亂度比非超導樣品(NS)較大,藉此說明鐵缺陷的亂度與超導有很大的關係。利用Fe Lα, β-edge RIXS 來分析RR factor,發現到超導樣品(SC)具有較低的磁自旋態,說明較多的低自旋態可以增加超導之特性。在Fe L3,2-edge 和 Se K-edge XANES中,發現在超導的樣品中(SC),由Fe 3d到Se 4p的電荷轉換現象較微弱,此即導致超導樣品(SC)有較低磁自旋態之原因之一。這些現象說明了在K2-xFe4+ySe5中鐵的自旋態、電荷轉移、鐵缺陷亂度與超導特性有強烈的關係。
在第二部分中,利用X光散射實驗發現到當Sr3Ir4Sn13 (SIS)單晶溫度低於不規則的電阻轉變T<147 K (T*)時,會演化出一系列的衛星峰,說明了當溫度低於T*時,電荷密度波(CDW)可能形成在(110)平面且此結果也與EXAFS結果相吻合。在Ir L3 -edge 和 Sn K-edge XANES中,證實在溫度接近T*時,不規則的電阻變化與Ir 5d態有強烈的關係而並非與Sn 5p態有關。根據以上的結果,在SIS單晶中局域性的電子、原子結構和CDW有著密不可分的關係。
In this thesis, the X-ray Absorption Near Edge Structure (XANES), Extended X-Ray Absorption Fine Structure (EXAFS), X-Ray Emission Spectroscopy (XES) and Resonant Inelastic X-Ray Scattering (RIXS) have been investigated the following two topics. In the first part, the superconductor, SC, (K1.9Fe4.2Se5) and non-superconductor, NS, (K2Fe4Se5) samples have been synthesized by quenching from various temperatures, 820 0C (SC-820 and NS-820) and 750 0C (SC-750 and NS-750). Fe K-edge EXAFS show enhanced Fe vacancy disorder in SC samples as compared to the NS samples, suggesting the Fe vacancy disorder strongly associated with the superconductor. The RR factor analysis by using Fe Lα, β-edge RIXS spectra, the SC-sample revealed the lower magnetic spin state, suggesting increasing in the low spin state enhance the superconducting behavior. Fe L3,2-edge and Se K-edge XANES suggested that the lower charge transfer effect from Fe 3d to Se 4p state in SC-group, which resulted in the lower spin state in SC-sample. These observations clearly elucidate that the spin state of Fe atom, charge transfer effect and Fe vacancy disorder are closely associated with the superconducting behavior in K2-xFe4+ySe5.
In the second part, the evolution of a series of satellite peaks below the anomalous resistivity transition (T*~147 K) have been observed in Sr3Ir4Sn13 (SIS) single crystal by using X-ray scattering experiment, indicating the formation of possible charge density wave (CDW) in the (110) plane, and consistent with Sn K-edge EXAFS results. XANES spectra at the Ir L3-edge and Sn K-edge demonstrated that the Ir 5d states are closely related to the anomalous resistivity transition, rather than the Sn 5p state. Accordingly, a close relationship exists between local electronic and atomic structures and the CDW-phase in the SIS.
References
1. Morosan, E. et al. Strongly correlated materials. Advance Material 24, 4896 (2012).
2. Tamai, A. et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys Rev Lett 104, 097002 (2010).
3. Edelstein, A. S. An overview of strongly correlated electron systems. Journal of Magnetism and Magnetic Materials 256, 430 (2003).
4. Guo, J. et al. Superconductivity in the iron selenide KxFe2Se2 (0≤x≤1.0). Physical Review B 82, 180520 (2010).
5. Mizuguchi, Y. et al. Transport properties of the new Fe-based superconductor KxFe2Se2 (Tc=33 K). Applied Physics Letters 98, 042511 (2011).
6. Wang, A. F. et al. Superconductivity at 32 K in single-crystalline RbxFe2−ySe2. Physical Review B 83, 060512 (2011).
7. Ye, F. et al. Common crystalline and magnetic structure of superconducting A2Fe4Se5 (A = K, Rb, Cs, Tl) single crystals measured using neutron diffraction. Phys Rev Lett 107, 137003 (2011).
8. Wang, D. M. et al. Effect of varying iron content on the transport properties of the potassium-intercalated iron selenide KxFe2−ySe2. Physical Review B 83, 132502 (2011).
9. Ying, J. J. et al. Superconductivity and magnetic properties of single crystals of K0.75Fe1.66Se2 and Cs0.81Fe1.61Se2. Physical Review B 83, 212502 (2011).
10. Chih-Han, W. et al. Disordered Fe vacancies and superconductivity in potassium-intercalated iron selenide (K2−xFe4+ySe5 ). EPL (Europhysics Letters) 111, 27004 (2015).
11. Yan, Y. J. et al. Electronic and magnetic phase diagram in KxFe2-ySe2 superconductors. Scientific Report 2, 212 (2012).
12. Goh, S. K. et al. Ambient pressure structural quantum critical point in the phase diagram of (CaxSr1-x)3Rh4Sn13. Phys Rev Lett 114, 097002 (2015).
13. Klintberg, L. E. et al. Pressure- and composition-induced structural quantum phase transition in the cubic superconductor (Sr, Ca)3Ir4Sn13. Phys Rev Lett 109, 237008 (2012).
14. Kase, N. et al. J. Superconducting state in the ternary stannide R3Co4Sn13 (R=Ca, La). Physica C: Superconductivity and its Applications 471, 711 (2011).
15. Kuo, C. N. et al. Characteristics of the phase transition near 147 K in Sr3Ir4Sn13. Physical Review B 89, 094520 (2014).
16. Kuo, C. N. et al. Lattice distortion associated with Fermi-surface reconstruction in Sr3Rh4Sn13. Physical Review B 91, 165141 (2015).
17. Liu, H. F. et al. Partially gapped Fermi surfaces in La3Co4Sn13 revealed by nuclear magnetic resonance. Physical Review B 88, 115113 (2013).
18. Israel, C. et al. Crystal structure and low-temperature physical properties of RMSn intermetallics. Physica B: Condensed Matter 359, 251 (2005).
19. Wang, Z. et al. Archimedean solidlike superconducting framework in phase-separated K0.8Fe1.6+xSe2 (0≤x≤0.15). Physical Review B 91, 064513 (2015).
20. Ricci, A. et al. Nanoscale phase separation in the iron chalcogenide superconductor K0.8Fe1.6Se2 as seen via scanning nanofocused x-ray diffraction. Physical Review B 84, 060511 (2011).
21. Li, W. et al. Phase separation and magnetic order in K-doped iron selenide superconductor. Nature Physics 8, 126 (2011).
22. Shoemaker, D. P. et al. Phase relations in KxFe2−ySe2 and the structure of superconducting KxFe2Se2 via high-resolution synchrotron diffraction. Physical Review B 86, 184511 (2012).
23. Shermadini, Z. et al. Superconducting properties of single-crystalline AxFe2−ySe2 (A=Rb, K) studied using muon spin spectroscopy. Physical Review B 85, 100501 (2012).
24. Lazarević, N. et al. Vacancy-induced nanoscale phase separation in KxFe2−ySe2 single crystals evidenced by Raman scattering and powder x-ray diffraction. Physical Review B 86, 054503 (2012).
25. Chang, C. C. et al. Superconductivity in Fe-chalcogenides. Physica C: Superconductivity and its Applications 514, 423 (2015).
26. Li, S. et al. Suppression of the antiferromagnetic order when approaching the superconducting state in a phase-separated crystal of KxFe2−ySe2. Physical Review B 96, 094503 (2017).
27. Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Reviews of Modern Physics 87, 855 (2015).
28. Bao, W. et al. A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor. Chinese Physics Letters 28, 086104 (2011).
29. Wang, Z. et al. Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy. Physical Review B 83, 140505 (2011).
30. Song, Y. J. et al. Phase transition, superstructure and physical properties of K2Fe4Se5. EPL (Europhysics Letters) 95, 37007 (2011).
31. Tompsett, D. A. Electronic structure and phonon instabilities in the vicinity of the quantum phase transition and superconductivity of (Sr,Ca)3Ir4Sn13. Physical Review B 89, 075117 (2014).
32. Lue, C. S. et al. Comparative study of thermodynamic properties near the structural phase transitions in Sr3Rh4Sn13 and Sr3Ir4Sn13. Physical Review B 93, 245119 (2016).
33. Elder, F. R. et al. Radiation from Electrons in a Synchrotron. Physical Review 71, 829 (1947).
34. Willmott, P. An Introduction to Synchrotron Radiation. (John Wiley & Sons 2011).
35. Birkholz, M. Thin Film Analysis by X‐Ray Scattering. (John Wiley & Sons, 2006).
36. Stöhr, J. NEXAFS Spectroscopy. (Springer, 1992).
37. Teo, B. K. EXAFS: basic principles and data analysis. (Springer-Verlag, 1986).
38. de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids. (CRC Press, 2008).
39. Ament, L. J. P. et al. Resonant inelastic x-ray scattering studies of elementary excitations. Reviews of Modern Physics 83, 705 (2011).
40. Kramers, H. A. & Heisenberg, W. Über die Streuung von Strahlung durch Atome. Zeitschrift für Physik 31, 681 (1925).
41. Wang, B.-Y. et al. Nonlinear bandgap opening behavior of BN co-doped graphene. Carbon 107, 857 (2016).
42. Mizuguchi, Y. et al. Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor. Journal of the Physical Society of Japan 79, 102001 (2010).
43. Dagotto, E. Colloquium: The unexpected properties of alkali metal iron selenide superconductors. Reviews of Modern Physics 85, 849 (2013).
44. Hsu, F.-C. et al. Superconductivity in the PbO-type structure α-FeSe. Proceedings of the National Academy of Sciences 105, 14262 (2008).
45. Yin, J. X. et al. Observation of a robust zero-energy bound state in iron-based superconductor Fe(Te,Se). Nature Physics 11, 543 (2015).
46. Si, Q. et al. High-temperature superconductivity in iron pnictides and chalcogenides. Nature Reviews Materials 1, 16017(2016).
47. Li, W. et al. Stripes developed at the strong limit of nematicity in FeSe film. Nature Physics 13, 957 (2017).
48. Wu, M. K. et al. The development of the superconducting PbO-type β-FeSe and related compounds. Physica C: Superconductivity 469, 340 (2009).
49. Yeh, K.-W. et al. Tellurium substitution effect on superconductivity of the α-phase iron selenide. EPL (Europhysics Letters) 84, 37002 (2008).
50. Mizuguchi, Y. et al. Anion height dependence of Tc for the Fe-based superconductor. Superconductor Science and Technology 23, 054013 (2010).
51. Fang, M. H. et al. Superconductivity close to magnetic instability inFe (Se1−xTex)0.82. Physical Review B 78, 224503 (2008).
52. Gray, A. X. et al. Correlation-Driven Insulator-Metal Transition in Near-Ideal Vanadium Dioxide Films. Physical Review Letters 116, 116403 (2016).
53. Simonelli, L. et al. Temperature dependence of iron local magnetic moment in phase-separated superconducting chalcogenide. Physical Review B 90, 214516 (2014).
54. Simonelli, L. et al. Coexistence of different electronic phases in the K0.8Fe1.6Se2 superconductor: A bulk-sensitive hard x-ray spectroscopy study. Physical Review B 85, 224510 (2012).
55. Ootsuki, D. et al. Coexistence of localized and itinerant electrons in BaFe2X3 (X= S and Se) revealed by photoemission spectroscopy. Physical Review B 91, 014505 (2015).
56. Cao, C. & Zhang, F. Electronic structure of vacancy-ordered iron-selenide K0.5Fe1.75Se2. Physical Review B 87, 161105 (2013).
57. Yan, X.-W., Gao, M., Lu, Z.-Y. & Xiang, T. Ternary iron selenide K0.8Fe1.6Se2. is an antiferromagnetic semiconductor. Physical Review B 83, 233205 (2011).
58. Prince, K. C. et al. Core-level spectroscopic study of FeO andFeS2. Physical Review B 71, 085102 (2005).
59. Chen, C. L. et al. X-Ray spectra and electronic correlations of FeSe(1-x)Te(x). Phys Chem Chem Phys 13, 15666 (2011).
60. Chen, C. L. et al. X-ray absorption spectroscopy investigation of the electronic structure of superconducting FeSexsingle crystals. EPL (Europhysics Letters) 93, 47003 (2011).
61. Pao, C. W. et al. Photoconduction and the electronic structure of silica nanowires embedded with gold nanoparticles. Physical Review B 84, 165412 (2011).
62. Perez, I. et al. Electronic structure of Co-substituted FeSe superconductor probed by soft x-ray spectroscopy and density functional theory. Physical Review B 90, 014510 (2014).
63. Hsieh, S. H. et al. Anisotropy in the thermal hysteresis of resistivity and charge density wave nature of single crystal SrFeO3-delta: X-ray absorption and photoemission studies. Scentifici Report 7, 161 (2017).
64. Wang, H. T. et al. Electronic and atomic structures of the Sr3Ir4Sn13 single crystal: A possible charge density wave material. Scentifici Report 7, 40886 (2017).
65. Chuang, Y. D. et al. Modular soft x-ray spectrometer for applications in energy sciences and quantum materials. Rev Sci Instrum 88, 013110 (2017).
66. Qiao, R. et al. High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. Rev Sci Instrum 88, 033106 (2017).
67. Perez, I. et al. Electronic Structure of FeSe1–xTex Studied by X-ray Spectroscopy and Density Functional Theory. The Journal of Physical Chemistry C 118, 25150 (2014).
68. Yang, W. L. et al. Evidence for weak electronic correlations in iron pnictides. Physical Review B 80, 014508 (2009).
69. Monney, C. et al. Resonant inelastic x-ray scattering at the Fe L3 edge of the one-dimensional chalcogenide BaFe2Se3. Physical Review B 88, 165103 (2013).
70. Nomura, T. et al. Resonant inelastic x-ray scattering study of entangled spin-orbital excitations in superconducting PrFeAsO0.7. Physical Review B 94, 035134 (2016).
71. Iadecola, A. et al. Local structure response of phase separation and iron-vacancy order in KxFe2−ySe2 superconductor. Physical Review B 90, 174509 (2014).
72. Rehr, J. J. et al. Theoretical x-ray absorption fine structure standards. Journal of the American Chemical Society 113, 5135 (1991).
73. Frenkel, A. I. et al. Multiple-scattering x-ray-absorption fine-structure analysis and thermal expansion of alkali halides. Physical Review B 48, 12449 (1993).
74. Wang, Y. C. et al. Structural distortion and electronic states of Rb doped WO3 by X-ray absorption spectroscopy. RSC Advances 6, 107871 (2016).
75. Chu, W. et al. Iron Isotope Effect and Local Lattice Dynamics in the (Ba,K)Fe2As2 Superconductor Studied by Temperature-Dependent EXAFS. Scientific Reports 3, 1750 (2013).
76. Liu, M. K. et al. Anisotropic Electronic State via Spontaneous Phase Separation in Strained Vanadium Dioxide Films. Physical Review Letters 111, 096602 (2013).
77. Saini, N. L. et al. Electronic structure of FeSe1−xTex studied by Fe L2,3-edge x-ray absorption spectroscopy. Physical Review B 83, 052502 (2011).
78. Saini, N. L. et al. X-ray absorption and photoemission spectroscopy of electronic phase separation in KxFe2−ySe2. Physical Review B 90, 184510 (2014).
79. Oiwake, M. et al. Electronic structure and phase separation of superconducting and nonsuperconducting KxFe2−ySe2 revealed by x-ray photoemission spectroscopy. Physical Review B 88, 224517, 224517 (2013).
80. Valla, T. et al. Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. Phys Rev Lett 92, 086401 (2004).
81. Borisenko, S. V. et al. Two energy gaps and Fermi-surface "arcs" in NbSe2. Phys Rev Lett 102, 166402 (2009).
82. Weber, F. et al. Extended phonon collapse and the origin of the charge-density wave in 2H-NbSe2. Phys Rev Lett 107, 107403 (2011).
83. Yang, J. J. et al. Charge-orbital density wave and superconductivity in the strong spin-orbit coupled IrTe2:Pd. Phys Rev Lett 108, 116402 (2012).
84. Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nature Physics 11, 328 (2015).
85. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nature Physics 12, 92 (2015).
86. Sato, H. et al. Magnetic and transport properties of RE3Ir4Sn13. Physica B: Condensed Matter 186, 630 (1993).
87. Tomy, C. V. et al. Observation of the peak effect in the superconductor Ca3Rh4Sn13. Physical Review B 56, 8346 (1997).
88. Lyle Thomas, E. et al. Crystal growth, transport, and magnetic properties of Ln3Co4Sn13 (Ln= La, Ce) with a perovskite-like structure. Journal of Solid State Chemistry 179, 1642 (2006).
89. Kase, N. et al. J. Superconducting state in the ternary stannide superconductorsR3T4Sn13 (R=La, Sr; T=Rh, Ir) with a quasiskutterudite structure. Physical Review B 83,184509 (2011).
90. Zhou, S. Y. et al. Nodeless superconductivity in Ca3Ir4Sn13: Evidence from quasiparticle heat transport. Physical Review B 86, 064504 (2012).
91. Ślebarski, A. et al. J. Electronic structure and crystallographic properties of skutterudite-related Ce3M4Sn13and La3M4Sn13 (M=Co, Ru, and Rh). Physical Review B 88, 155122 (2013).
92. Fang, A. F., Wang, X. B., Zheng, P. & Wang, N. L. Unconventional charge-density wave in Sr3Ir4Sn13 cubic superconductor revealed by optical spectroscopy study. Physical Review B 90, 035115 (2014).
93. Mazzone, D. G. et al. Crystal structure and phonon softening in Ca3Ir4Sn13. Physical Review B 92, 024101 (2015).
94. Galli, F. et al. Charge-Density-Wave Transitions in the Local-Moment Magnet Er5Ir4Si10. Physical Review Letters 85, 158 (2000).
95. Huang, C. H. et al. Electronic and atomic structures of quasi-one-dimensional K0.3MoO3. Applied Physics Letters 86, 141905 (2005).
96. Du, C.-h. et al. Direct measurement of spatial distortions of charge density waves in K0.3MoO3. Applied Physics Letters 88, 241916 (2006).
97. Tsai, H. M. et al. Anisotropic electronic structure in quasi-one-dimensional K0.3MoO3: An angle-dependent x-ray absorption study. Applied Physics Letters 91, 022109 (2007).
98. Kim, Y.-J. et al. X-ray scattering study of charge density waves in La2−xBaxCuO4. Physical Review B 77, 064520 (2008).
99. Du, C. H. et al. The modulated structure and ferromagnetic insulating state in a nine-layer BaRuO3. J Phys Condens Matter 22, 036003 (2010).
100 . Collins, M. F. Magnetic Critical Scattering. (Oxford University Press, 1989).
101. Joseph, B. et al. Local structural displacements across the structural phase transition in IrTe2: Order-disorder of dimers and role of Ir-Te correlations. Physical Review B 88, 224109 (2013).
102. Piamonteze, C. et al. Short-range charge order in RNiO3 perovskites (R=Pr, Nd, Eu, Y) probed by x-ray-absorption spectroscopy. Physical Review B 71, 012104 (2005).
103. Wang, B. Y. et al. Effect of geometry on the magnetic properties of CoFe2O4–PbTiO3 multiferroic composites. RSC Advances 3, 7884 (2013).
104. Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy. Physical Review B 86, 195131 (2012).
105. Aluri, E. R. et al. X-ray absorption spectroscopic study of the effect of bond covalency on the electronic structure of Gd2Ti(2-x)Sn(x)O7. Phys Chem Chem Phys 15, 10477 (2013).
106. Mon, K. K. et al. Core polarization and the structure of simple metals. Physical Review B 19, 5103 (1979).
107. Seymour, E. F. W. Metallic Shifts in NMR: A Review of the Theory and Comprehensive Critical Data Compilation of Metallic Materials (Progress in Materials Science Vol 20). Physics Bulletin 28, 521 (1977).
108. Tan, S. Y. et al. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O. Scientific Reports 5, 9515 (2015).
109. Rahn, D. J. et al. Gaps and kinks in the electronic structure of the superconductor 2H-NbSe2 from angle-resolved photoemission at 1 K. Physical Review B 85, 224532 (2012).
110. Qazilbash, M. M. et al. Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging. Science 318, 1750 (2007).